Wrapping up BGP & & Designing IP

Spring 2022
Sylvia Ratnasamy
CS168.io

Outline

- Wrapping up BGP
 - Context
 - Goals
 - Approach
 - Protocol design
 - Limitations
- Designing IP

So far: our model of the AS graph

An AS advertises routes to its neighbor ASes

In reality...

Many design questions....

- How do we ensure the routers "act as one"?
 - The role of border vs. interior routers?
 - Interaction between BGP and IGP?
 - How does BGP implement all this?

Who speaks BGP?

Border routers at an Autonomous System

What does "speak BGP" mean?

- Advertise routes as specified by the BGP protocol standard
 - read more here: http://tools.ietf.org/html/rfc4271
- Specifies what messages BGP "speakers" exchange
 - message types and syntax
- And how to process these messages
 - e.g., "when you receive a BGP update, do.... "

Some Border Routers Don't Need BGP

- Customer that connects to a single provider AS
 - Provider can advertise prefixes into BGP on behalf of customer
 - ... and the customer can simply default-route to the AS

Only border routers exchange messages with routers in external domains (hence, external BGP or "eBGP")

BGP "sessions"

Border router speaks BGP with routers in its own AS (hence, *internal* BGP, or "iBGP")

eBGP, iBGP, IGP

- eBGP: BGP sessions between border routers in <u>different</u> ASes
 - exchange routes to different destination prefixes
- iBGP: BGP sessions between border routers and other routers within the same AS
 - distribute externally learned routes internally
- IGP: "Interior Gateway Protocol" = Intradomain routing protocol
 - provide internal reachability
 - e.g., OSPF, RIP

Putting the pieces together

4. Travel shortest path to egress (IGP)

Putting the pieces together

4. Travel shortest path to egress (IGP)

Short Summary

- Every router in AS has two routing tables:
 - From IGP: next hop router to all internal destinations
 - From iBGP: egress router to all external destinations
- For internal addresses, just use IGP
 - Entry <internal destination, internal next hop>
- For external locations: use iBGP to find egress
 - Use IGP to find next hop to egress router

In Reality....

- Many different ways to configure a domain
- Option #1: run iBGP between all routers in domain
 - Requires NxB iBGP connections. Could be a scaling issue.
 - This is what we will assume
- Option #2: only run iBGP between border routers
 - Inject external routes into IGP
- Option #3: Run a "route reflector" for iBGP
 - N rather than NxB connections

Many design questions....

- How do we ensure the routers in an AS "act as one"?
 - The role of border vs. interior routers?
 - Interaction between BGP and IGP
 - How is all this implemented?
 - Route updates and attributes

BGP protocol message types

- Open
- Keepalive
- Notification
- ...
- Update
 - Inform neighbor of new routes
 - Inform neighbor of updates to old routes
 - "Withdraw" a route that's now inactive

Route Updates

- Format <IP prefix: route attributes>
 - attributes describe properties of the route

Route Attributes

- General mechanism used to express properties about routes
 - Used in route selection/export decisions
- Some attributes are local to an AS
 - Not propagated in eBGP advertisements
- Others are propagated in eBGP route advertisements
 - There are many standardized attributes in BGP
 - We will discuss four important ones

Attributes (1): ASPATH

- Path vector that lists all the ASes a route advertisement has traversed (in reverse order)
- Carried in route announcements

Attributes (2): LOCAL PREFERENCE

- Used to choose between different AS paths
- Local to an AS; carried only in iBGP messages
- The higher the value the more that route is preferred

Attributes (2): LOCAL PREFERENCE

- Used to choose between different AS paths
- Local to an AS; carried only in iBGP messages
- The higher the value the more that route is preferred

In reality...

Attributes (3): MED

MED = "Multi-Exit Discriminator"

 Used when ASes are interconnected via 2 or more links to specify how close a prefix is to the link it is announced on

Attributes (3): MED

- AS announcing prefix sets MED (lower is better)
- AS receiving prefix (optionally!) uses MED to select link

More reality...

Attributes (4): IGP cost

hot potato

- Local to an AS
- Each router selects its closest border router
 - Closest based on IGP cost
 - a.k.a. "hot potato" routing

Note: IGP may conflict with MED

IGP-MED conflicts pretty common

Can lead to asymmetric paths!

Closing the loop... Typical Selection Policy

- In decreasing order of priority
 - make/save money
 - maximize performance
 - minimize use of my network bandwidth
 - ...
 - ...

Closing the loop... Typical Selection Policy

- In decreasing order of priority
 - make/save money: LOCAL PREF (cust > peer > provider)
 - maximize performance: length of ASPATH
 - minimize use of my network bandwidth: "hot potato", MED
 - ...
 - ...

Using Attributes

Rules for route selection in priority order

Priority	Rule	Remarks
1	LOCAL PREF	Pick highest LOCAL PREF
2	ASPATH	Pick shortest ASPATH length
3	IGP path	Lowest IGP cost to next hop (egress router)
4	MED	MED preferred
5	Router ID	Smallest next-hop router's IP address as tie-breaker

Questions?

Outline

- Context
- Goals
- Approach
- Detailed design
- Limitations

Issues with BGP

Security

Performance (non?)issues

Prone to misconfiguration

Reachability and Convergence

Questions?

Taking Stock: We've done...

- An end-to-end overview of the Internet arch.
- A deep dive on how routing works (intra/inter)
 - Fundamental part of a network's control plane
- This week: back to the network data plane
 - Today: what data packets look like at the IP layer
 - Thursday: how routers forward these IP packets
- At which point, you'll know how L3 works!

Let's design the IP header

- Syntax: format of an IP packet
 - Nontrivial part: header
 - Rest is opaque payload

- **Semantics**: meaning of IP header fields
 - How they're processed

Recall: Layering

Recall: Hosts vs. Routers

Designing the IP header

- Think of the IP header as an interface
 - between the source and network (routers)
 - between the source and destination endhosts

- Designing an interface
 - what task(s) are we trying to accomplish?
 - what information is needed to do it?
- Header reflects information needed for basic tasks

What are these tasks? (at a router, at the destination host)

- Parse packet (router, dst host)
- Forward packet to the L3 destination (router)
- Tell destination what to do next (dst host)
- Get responses back to the source (dst host, router)
- Deal with problems along the way (router, dst host)
- Specify any special handling (router, dst host)

Next: what information do we need?

Parse Packet Correctly

What version of IP?

Where does header end?

• Where does packet end?

Deliver packet to the L3 destination

Provide destination address (duh!)

Tell the destination how to handle packet

- Indicate which protocol should handle packet next
- Protocol field: identifies the higher-level protocol
 - Important for de-multiplexing at receiving host

Tell the destination how to handle packet

- Protocol field that identifies the L4 protocol for this packet
- Common examples
 - "6" for the Transmission Control Protocol (TCP)
 - "17" for the User Datagram Protocol (UDP)

Get responses back to the source

Source IP address

Where are we ...

- Parse packet → version, header length, packet length
- Forward packet to the L3 dst → destination address
- Tell destination what to do next → protocol field
- Get responses back to the source → source address
- Deal with problems along the way
- Specify any special handling

What problems?

- Loops
- Corruption
- Packet too large (> MTU)

Preventing Loops

- Forwarding loops cause packets to cycle for a looong time
 - left unchecked would accumulate to consume all capacity

- Time-to-Live (TTL) field
 - decremented at each hop, packet discarded if reaches 0
 - ...and "time exceeded" message is sent to the source

Means header must include *source* IP address

Header Corruption

- Checksum
 - Small #bits used to check integrity of some data (e.g., hash)
 - Particular form of checksum <u>over packet header</u>
- If not correct, router/destination discards packets
 - So it doesn't act on bogus information
- Checksum updated at every router
 - Why?
 - Why include TTL?
 - Why only header?

Fragmentation

- Every link has a "Maximum Transmission Unit" (MTU)
 - largest number of bits it can carry as one unit
- A router can split a packet into multiple "fragments" if the packet size exceeds the link's MTU

Must reassemble to recover original packet

Details of fragmentation will be covered in section

Where are we ...

- Parse packet → version, header length, packet length
- Forward packet to the L3 dst → destination address
- Tell destination what to do next → protocol field
- Get responses back to the source → source address
- Deal with problems along the way
 TTL, source address, checksum, frag. fields (TBD)
- Specify any special handling

What forms of special treatment?

- Don't treat all packets the same ("Type of Service")
 - Idea: treat packets based on app/customer needs
- "Options"
 - Request advanced functionality for this packet

"Type of Service" (ToS)

- Originally: multiple bits used to request different forms of packet delivery
 - Based on priority, delay, throughput, reliability, or cost
 - Frequently redefined, never fully deployed
 - Only notion of priorities remained
- Today:
 - Differentiated Services Code Point (DSCP): traffic "classes"
 - Explicit Congestion Notification (ECN): a later lecture

Options

Optional directives to the network

- Examples
 - Record Route, Source Route, Timestamp, ...
- More complex implementation
 - Leads to variable length headers
 - Often leads to higher processing overheads

Where are we ...

- Parse packet
 \(\rightarrow \) version, header length, packet length
- Forward packet to the L3 dst → destination address
- Tell destination what to do next → protocol field
- Get responses back to the source → source address
- Deal with problems along the way
 TTL, source address, checksum, frag. fields (TBD)
- Specify any special handling → ToS, options

IP Packet Structure

Two remaining topics

- IPv4 \rightarrow IPv6
- Security implications of the IP header

IPv6

- Motivated (prematurely) by address exhaustion
 - Addresses four times as big
- Took to the opportunity to do some "spring cleaning"
 - Got rid of all fields that were not absolutely necessary
- Result is an elegant, if unambitious, protocol

What "clean up" would you do?

4-bit Version	4-bit Header Length	8-bit Type of Service	16-bit Total Length (Bytes)			
	16-bit Id	entification	3-bit Flags	13-bit Fragment Offset		
8-bit Time to Live (TTL) 8-bit Protocol			16-bit Header Checksum			
32-bit Source IP Address						
32-bit Destination IP Address						
Options (if any)						
Payload						

Summary of Changes

- Expanded addresses
- Eliminated checksum (why?)
- Eliminated fragmentation (why?)
- New options mechanism → "next header"
- Eliminated header length (why?)
- Added Flow Label
 - Explicit mechanism to denote related streams of packets

IPv4 and IPv6 Header Comparison

IPv4 IPv6

Version	IHL	Type of Service	Total Length		Version	Version Traffic Class Flow Labe		.abel
Identification		Flags	Fragment Offset	Pay	load Length	Next Header	Hop Limit	
Time to	l ive	Protocol	Head	er Checksum	rieddei			
Time to	LIVE	1 1010001	Head	er Onecksum				
Source Address					Source Address			
Destination Address				o o a roo ra a roo o				
Options Padding			Padding					
Field name kept from IPv4 to IPv6 Fields not kept in IPv6 Name & position changed in IPv6						Destination Address		
New field in IPv6								

Philosophy of Changes

- Don't deal with problems: leave to ends
 - Eliminated fragmentation
 - Eliminated checksum
 - Why retain TTL?
- Simplify:
 - Got rid of options
 - Got rid of IP header length
- While still allowing extensibility
 - general next-header approach
 - general flow label for packet

Quick Security Analysis of IP Header

Focus on Sender Attacks

Vulnerabilities a sender can exploit

- Note: not a comprehensive view of potential attacks!
 - For example, we'll ignore attackers other than the sender

IP Packet Structure

4-bit Version	4-bit Header Length	8-bit Type of Service	16-bit Total Length (Bytes)			
	16-bit Id	entification	3-bit Flags	13-bit Fragment Offset		
8-bit Time to Live (TTL) 8-bit Protocol			16-bit Header Checksum			
32-bit Source IP Address						
32-bit Destination IP Address						
Options (if any)						
Payload						

IP Address Integrity

- Source address should be the sending host
 - But who's checking?
 - You could send packets with any source you want

Implications of IP Address Integrity

- Why would someone use a bogus source address?
- Attack the destination
 - Send excessive packets, overload network path to destination
 - But: victim can identify/filter you by the source address
 - Hence, evade detection by putting different source addresses in the packets you send ("spoofing")
- Or: as a way to bother the spoofed host
 - Spoofed host is wrongly blamed
 - Spoofed host may receive return traffic from the receiver(s)

Security Implications of TOS?

- Attacker sets TOS priority for their traffic?
 - Network prefers attack traffic
- What if the network charges for TOS traffic ...
 - ... and attacker spoofs the victim's source address?
- Today, mostly set/used by operators, not end-hosts

Security Implications of Fragmentation?

- Send packets larger than MTU → make routers do extra work
 - Can lead to resource exhaustion

More Security Implications

- IP options
 - Misuse: e.g., Source Route lets sender control the path taken through network - say, to sidestep a firewall
 - Processing IP options often processed in router's slow path

 attacker can try to overload routers (coming up)
 - Routers sometimes configured to drop packets with options

Security Implications of TTL? (8 bits)

- Allows discovery of topology (a la traceroute)
- Initial value is somewhat distinctive to sender's operating systems. This plus other such initializations allow OS fingerprinting ...
 - Which allow attacker to infer its likely vulnerabilities

Other Security Implications?

- No apparent problems with protocol field (8 bits)
 - It's just a de-muxing handle
 - If set incorrectly, next layer will find packet ill-formed
- Bad IP checksum field (16 bits) will cause packet to be discarded by the network
 - Not an effective attack...

Recap: IP header design

More nuanced than it first seems!

- Must juggle multiple goals
 - Efficient implementation
 - Security
 - Future needs

Questions?