
Wrapping up the IP header
& 

Reliability Concepts

Spring 2022
Sylvia Ratnasamy

CS168.io

1



Designing IP: two remaining topics

l IPv4 à IPv6 
l Security implications of the IP header



IPv6

l Motivated by address exhaustion
l Addresses four times as big

l Took the opportunity to do some “spring cleaning”
l Got rid of all fields that were not absolutely necessary

l Result is an elegant, if unambitious, protocol



What “clean up” would you do?

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Summary of Changes

l Expanded addresses 
l Eliminated checksum
l Eliminated fragmentation
l New options mechanism à “next header”



Summary of Changes

l Expanded addresses 
l Eliminated checksum
l Eliminated fragmentation
l New options mechanism à “next header”



Summary of Changes

l Expanded addresses 
l Eliminated checksum
l Eliminated fragmentation
l New options mechanism à “next header”
l Eliminated header length
l Added Flow Label

l Explicit mechanism to denote related streams of packets



IPv4 and IPv6 Header Comparison

Version IHL Type of 
Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Version Traffic Class Flow Label

Payload Length Next 
Header Hop Limit

Source Address

Destination Address

IPv4 IPv6

Field name kept from IPv4 to IPv6
Fields not kept in IPv6
Name & position changed in IPv6
New field in IPv6



Philosophy of Changes

l Don’t deal with problems: leave to ends
l Eliminated fragmentation
l Eliminated checksum
l Why retain TTL?

l Simplify:
l Got rid of options
l Got rid of IP header length 

l While still allowing extensibility 
l general next-header approach
l general flow label for packet



Quick Security Analysis of IP Header



Focus on Sender Attacks

l Vulnerabilities a sender can exploit

l Note: not a comprehensive view of potential attacks!
l For example, we’ll ignore attackers other than the sender



IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



IP Address Integrity

l Source address should be the sending host
l But who’s checking?
l You could send packets with any source you want



Implications of IP Address Integrity

l Why would someone use a bogus source address?

l Attack the destination
l Send excessive packets, overload network path to destination
l But: victim can identify/filter you by the source address
l Hence, evade detection by putting different source addresses 

in the packets you send (“spoofing”)

l Or: as a way to bother the spoofed host
l Spoofed host is wrongly blamed
l Spoofed host may receive return traffic from the receiver(s)



Security Implications of TOS? 

l Attacker sets TOS priority for their traffic?
l Network prefers attack traffic

l What if the network charges for TOS traffic …
l … and attacker spoofs the victim’s source address?

l Today, mostly set/used by operators, not end-hosts



Security Implications of Fragmentation?

l Send packets larger than MTU à make routers do 
extra work
l Can lead to resource exhaustion



More Security Implications

l IP options
l Processing IP options often processed in router’s control plane 

(i.e., slow path) à attacker can try to overload routers

l Routers often ignore options / drop packets with options



Security Implications of TTL? (8 bits)

l Allows discovery of topology (a la traceroute)

l Some routers do not respond with a TTL exceeded 
error message



Other Security Implications?

l No apparent problems with protocol field (8 bits)
l It’s just a de-muxing handle
l If set incorrectly, next layer will find packet ill-formed

l Bad IP checksum field (16 bits) will cause packet to 
be discarded by the network
l Not an effective attack…



Recap: IP header design

l More nuanced than it first seems!

l Must juggle multiple goals
l Efficient implementation 
l Security
l Future needs 



Questions?

21



Next topic: Reliable Transport

l Today: focus on concepts and mechanisms

l Next week (after midterm): the design of TCP 

22

Material from here on is not on the midterm! 



Reliable Delivery Is Necessary

l Many app semantics involve reliable delivery
l E.g., file transfer

l Challenge: building a reliable service on top of 
unreliable packet delivery

l Bridging the gap between
l the abstractions application designers want
l the abstractions networks can easily support

23



Semantics of correct delivery 

l At network layer: best-effort delivery
l At transport layer: at-least-once delivery
l At the app layer: exactly-once delivery

Router

Transport

Network

Datalink

Physical

Application

Network

Datalink

Physical

Network

Datalink

Physical

Transport

Network

Datalink

Physical

Application

RouterHost A Host B



Goals For Reliable Transfer
(at the Transport Layer)

l Correctness
l The destination receives every packet, uncorrupted, at 

least once

l Timeliness
l Minimize time until data is transferred

l Efficiency
l Would like to minimize use of bandwidth
l i.e., avoid sending packets unnecessarily



Note!

l A reliability protocol (at the transport layer) can 
“give up”, but must announce this to application
l E.g., if the network is partitioned 

l But it can never falsely claim to have delivered a 
packet

26



A best-effort network

l Packets can be lost
l Packets can be corrupted
l Packets can be reordered
l Packets can be delayed
l Packets can be duplicated

27



time

Sender Receiver

Quick reminder

One-way delay
RTT

(round-trip time)



Designing a reliability protocol

l Let’s start with the single packet case

l Remember 
l Packets can be lost
l Packets can be corrupted
l Packets can be reordered
l Packets can be delayed
l Packets can be duplicated
l ….



time

Sender Receiver

ý
start timer

timeout

ackcancel timer



time

Sender Receiver

start timer

acký

timeout

ack

Note: destination received the packet twice
(and that’s fine!) 



How to set timers?

l Too long: will delay delivery 
l Too short: unnecessary retransmissions

l Ideally, proportional to the RTT (next lecture)

l Non-trivial to get right in practice 
l RTTs vary across paths (10µs to 100s ms)
l RTT of a fixed path varies over time (load, congestion)

l Hence, often used as last resort



l We said 
l Packets can be lost (data or ACKs) 
l Packets can be corrupted 
l Packets can be delayed
l Packets can be duplicated
l Packets can be reordered



time

Sender Receiver

þ

nack
ý checksum

checksum



time

Sender Receiver

ý checksum
drop pkt

þ checksum



l We said 
l Packets can be lost (data or ACKs) 
l Packets can be corrupted 
l Packets can be delayed
l Packets can be duplicated
l Packets can be reordered



time

Sender Receiver

þ

start timer



time

Sender Receiver

þ

start timer

timeout

þ

Our solution handles delayed packets!
(no additional mechanism needed)

Note: sender received the ACK twice
(and that’s fine!) 



l We said 
l Packets can be lost (data or ACKs) 
l Packets can be corrupted 
l Packets can be delayed
l Packets can be duplicated
l Packets can be reordered



time

Sender Receiver

þ

ack

Why would the network even duplicate a packet? 
Usually, because of link-level reliability gone wrong (very rare)

þ

Looks no different from our previous scenarios  

Our solution also handles packet duplicates!



l We said 
l Packets can be lost (data or ACKs) 
l Packets can be corrupted 
l Packets can be delayed
l Packets can be duplicated
l Packets can be reordered



Have solved the single packet case!

l Sender: 
l Send packet
l Set timer
l If no ACK when timer goes off, resend packet

l And reset timer

l Receiver
l When receiver gets packet, sends ACK

42



What have we learnt?

l Building blocks for a solution 
l Checksums: to detect corruption 
l Feedback from receiver: positive/negative (ack/nack)
l Retransmissions: sender resends packets
l Timeouts: when to resend a packet

l Semantics of a solution: “at least once” 
l Receiver can receive the same packet more than once 
l Sender can see the same ack/nack more than once 

43



Questions?

44



Next: reliably send multiple packets

l Will need +1 design component: sequence numbers!



ack(2)

ack(1)

Data packets carry sequence numbers; 
and ACKs indicate what sequence numbers have been received

1

2



Next: reliably send multiple packets

l Will need +1 design component: sequence numbers!

l We now have all the necessary building blocks!



Strawman: “Stop and Wait” protocol

l Use our single-packet solution repeatedly
l Wait for packet i to be acknowledged before sending i+1

l We have a correct reliable delivery protocol!

l Probably the world’s most inefficient one
l Max throughput ~ one packet per RTT



Sender Receiver

ack(1)

ý

1

2

ack(2)

3

ack(3)

3

ack(3)

4



Sender Receiver

ack(1)

1

ack(2)
ack(3)
ack(4)

2
3
4

Idea: have multiple packets “in flight”
(send additional packets while waiting for ACKs to come in)



Window-based Algorithms

l Basic idea: allow W packets “in flight” at any time
l W is the size of the window

l Hence, a simple algorithm (at sender)
l Send W packets 
l When one gets ACK’ed, send the next packet in line

51



Sender Receiver

Example with W=4

window

Start with window = {1,2,3,4} 

1
2
3
4



Sender Receiver

ack(1)window

1
2
3
4

5

Example with W=4

On receiving ack(1), window = {2,3,4,5} 



Sender Receiver

ack(1)
window

1
2
3
4

5

Example with W=4

On receiving ack(2), window = {3,4,5,6} 

ack(2)

6



Reliably sending many packets

l Will need +1 design component: sequence numbers!

l We now have all the necessary building blocks

l Plus one more, for efficiency (performance)
l Window



New Design Considerations

l Window size
l How many in-flight packets do we want?

l Nature of feedback 
l Can we do better than ACKing one packet at a time?

l Detection of loss 
l Can we do better than waiting for timeouts?

l Response to loss
l Which packet should sender resend? 56



How big should the window be?

l Pick window size W to balance three goals
l Take advantage of network capacity (“fill the pipe”)
l But don’t overload links (congestion control)
l And don’t overload the receiver (flow control)

l If we ignore all but the first goal then we want to 
keep the sender always sending (ideal case)
l W should allow sender to transmit for entire RTT

l RTT = round-trip time
l RTT: from sending first packet until receive first ACK

57



Sender Receiver

ack(1)

1

ack(2)
ack(3)
ack(4)

2
3
4

5

RTT

Window = 4



Sender Receiver

ack(1)

1

ack(2)
ack(3)
ack(4)

2
3
4

5

wasted
time (BW)

Window = 4



Sender Receiver

ack(1)

1

ack(2)
ack(3)
ack(4)

2
3
4

More desirable 
window size

Window = 8



What Does This Mean?

l Let B be the minimum link bandwidth along the path
l Obviously shouldn’t send faster than that 
l Don’t want to send slower than that (for first goal)

l Want the sender to send at rate B for the duration of RTT 
l I.e., ACK for the first packet arrives at the sender, just as the last 

of W packets leaves

l Hence, condition: W x Packet-Size ~ RTT x B

61



Setting W to be one RTT of packets

Sender Receiver

456

ack(1)

ack(2)

ack(3)

{1,2,3,4,5,6}



New Design Considerations

l Window size
l How many in-flight packets do we want?

l Nature of feedback 
l Can we do better than ACKing one packet at a time?

l Detection of loss 
l Can we do better than waiting for timeouts?

l Response to loss
l Which packet should sender resend? 63



ACKs: design options

l Individual packet ACKs (our design so far)
l On receiving packet i, send ack(i)

64



Sender Receiver

ack(1)

1

ack(2)
ack(3)
ack(4)

2
3
4

ý

2

Unnecessary and avoidable 
retransmission!



ACKs: design options

l Individual packet ACKs (our design so far)
l On receiving packet i, send ack(i)

l Full Information ACKs
l Give highest cumulative ACK plus any additional packets 

received (“everything up to #12 and #14, #15”)

66



Sender Receiver

ack(<=1)

1

ack(<=2)

2
3
4

ý
ack(<=3)
ack(<=4)

Sender learns #2 was received when it 
receives the 3rd and 4th ACK



Sender Receiver

1
2
3
4 ý

ack(<=1)ý
5

ack(<=1 plus 3)

ack(<=1 plus 3, 5)

Problem: ACK info is getting long! 



ACKs: design options

l Individual packet ACKs (our design so far)
l On receiving packet i, send ack(i)

l Full Information ACKs
l Give highest cumulative ACK plus any additional packets 

received (“everything up to #12 and #14, #15”)

l Cumulative ACKs
l ACK the highest sequence number for which all previous 

packets have been received
69



Sender Receiver

ack(<=1)

1

ack(<=2)

2
3
4

ý
ack(<=3)
ack(<=4)

Same behavior as full-information ACKs



Sender Receiver

1
2
3
4 ý

ack(<=1)ý
5

ack(<=1)

ack(<=1)

ACK info scales better 
(but is more ambiguous!)



Recap: ACK tradeoffs

l Individual
l Pro: compact; simple
l Con: loss of ACK packet always requires a retransmission

l Full Information
l Pro: complete info on data packets; more resilient to ACK loss
l Con: Could require sizable overhead in bad cases 

l Cumulative
l Pro: compact; more resilient to ACK loss (vs. individual ACKs)
l Con: Incomplete info on which data packets arrived

72



New Design Considerations

l Window size
l How many in-flight packets do we want?

l Nature of feedback 
l Can we do better than ACKing one packet at a time?

l Detection of loss 
l Can we do better than waiting for timeouts?

l Response to loss
l Which packet should sender resend? 73



Detecting Loss

l If packet times out, assume it is lost... 

l How else can you detect loss?

l When ACKs for k “subsequent packets” arrive
l E.g., only packet 5 is lost, will receive ACKs for 6, 7, ... 
l E.g., if k=3, retransmit 5 after we receive ACKs for 6, 7, 8
l Details look a little different for each ACK option (next slides)

l Why bother? 
74



Loss with individual ACKs

l Assume packet 5 is lost, but no others

l Stream of ACKs will be:
l 1
l 2
l 3
l 4
l 6
l 7
l 8
l ….

75Declare packet 5 lost! (Because received k=3 subsequent ACKs)



Loss with full information

l Same story, except that the “hole” is explicit in each ACK 

l Stream of ACKs will be:
l Up to 1
l Up to 2
l Up to 3
l Up to 4
l Up to 4, plus 6
l Up to 4, plus 6,7
l Up to 4, plus 6,7,8

76

Declare packet 5 lost! (Received k=3 subsequent ACKs)



Loss with cumulative ACKs

l Assume packet 5 is lost, but no others

l Stream of ACKs will be:
l Up to 1
l Up to 2
l Up to 3
l Up to 4
l Up to 4 (sent when packet 6 arrives)
l Up to 4 (sent when packet 7 arrives)
l Up to 4 (sent when packet 8 arrives)

Duplicate ACKs
(dupACKs)

Packet 5 lost! (Received k=3 dupACKs)



New Design Considerations

l Window size
l How many in-flight packets do we want?

l Nature of feedback 
l Can we do better than ACKing one packet at a time?

l Detection of loss 
l Can we do better than waiting for timeouts?

l Response to loss
l Which packet should sender resend? 78



Response to loss

l On timeout, always retransmit corresponding packet

l What about when our ACK-based rule fires? 
l Retransmit unACKed packet, but which one? 
l Decision is clear with individual and full-info ACKs 
l Decision is clear with cumulative ACKs and a single packet loss
l But can be ambiguous with cumulative ACKs and multiple losses

(see example in backup)



Response with cumulative ACKs

l Cumulative ACKs don’t tell the sender exactly which 
packets were received

l Can tell how many packets to send 
l Because #dupACKs tells us how many pkts were received

l But not which ones to (re)send
l Ambiguity leads to ad-hoc heuristics

l Unfortunately, TCP uses cumulative ACKs...



Taking Stock... 

l We’ve identified our design building blocks
l Checksums
l ACK/NACKs
l Timeouts
l Retransmissions
l Sequence numbers 
l Windows

l And discussed tradeoffs in how to apply them 
l Individual vs. Full vs. Cumulative ACKs
l Timeout vs. ACK-driven loss detection 

81



From design options to design

l Can put together a variety of reliability protocols from 
our building blocks! 
l We saw one already: Stop-and-Wait 
l Another possibility: “Go-Back-N” (in section) 
l TCP implements yet another (next lecture)

l More important that you know how to design and 
evaluate a reliability protocol, than that you memorize 
the details of any one implementation!

82



Preview: what does TCP do?

l Uses most of our building blocks w/ a few diffs.
l Checksums
l ACKs (no explicit NACKs)
l Windows 
l Sequence numbers à measured in byte offsets
l Cumulative ACKs (and counting dupACKs)
l Option for a form of full-information ACKs (SACK)
l Timers (w/ timer estimation algorithm)



Final thought: other approaches?

l Sender encodes the data to be resilient to loss
l Basic idea: add some redundancy to data / packet stream
l E.g., take k packets, encode as n (>k) packets 
l Original packets can be recovered if any k’ of n packets are received 

(n > k’ > k)
l Efficiency depends on k’/k

l Vast literature on coding schemes 
l E.g., fountain codes, raptor codes, ...  

l Historically not used very much but that could change... 



Questions?

85



Sender Receiver

1

1

2

Pkt 
1 or 2?

ý

Backup#1: We need sequence numbers with stop-and-wait



Backup#2: ambiguity with cumulative 
ACKs and multiple losses

87



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives 



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives à send 9

9



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives à send 9
l ACK 6 arrives 

9



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives à send 9
l ACK 6 arrives à send 10

9 10



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives à send 9
l ACK 6 arrives à send 10
l ACK 7 arrives (3rd ACK for subsequent packet)

9 10



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives à send 9
l ACK 6 arrives à send 10
l ACK 7 arrives à resend 3, send 11

9 10 11



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives à send 9
l ACK 6 arrives à send 10
l ACK 7 arrives à resend 3, send 11
l ACK 8 arrives

9 10 11



Response with individual ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l ACK 4 arrives à send 9
l ACK 6 arrives à send 10
l ACK 7 arrives à resend 3, send 11
l ACK 8 arrives à resend 5, send 12
l ACK 9 arrives à send 13, and so on... 

9 10 11 12



Response with full-info ACKs

l Similar behavior as with Individual ACKs



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 
#duplicate ACKs = 1



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 à send 9

9
#duplicate ACKs = 1



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 à send 9
l (for packet 6) ACK 2 

9
#duplicate ACKs = 2



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 à send 9
l (for packet 6) ACK 2 à send 10

9 10
#duplicate ACKs = 2



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 à send 9
l (for packet 6) ACK 2 à send 10
l (for packet 7) ACK 2

9 10
#duplicate ACKs = 3



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 à send 9
l (for packet 6) ACK 2 à send 10
l (for packet 7) ACK 2 à resend 3, send 11

9 10 11
#duplicate ACKs = 3



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 à send 9
l (for packet 6) ACK 2 à send 10
l (for packet 7) ACK 2 à resend 3, send 11
l (for packet 8) ACK 2 

9 10 11
#duplicate ACKs = 4



Response with cumulative ACKs

l Consider a sender with a window size = 6 & k=3
l Packets 1,2 have been ACKed
l 3-8 are “in flight” 

1 2 3 4 5 6 7 8

l (for packet 4) ACK 2 à send 9
l (for packet 6) ACK 2 à send 10
l (for packet 7) ACK 2 à resend 3, send 11
l (for packet 8) ACK 2 à send 12 but (re)send ??? 

9 10 11 12
#duplicate ACKs = 4


