
Congestion Control

CS 168
http://cs168.io

Sylvia Ratnasamy

http://cs168.io/

Today: Congestion Control

l One of the "core" topics in networking
l Will occupy us for ~3 lectures

l Today: concepts and design space
l Thu: CC in TCP
l Next week: advanced CC

l If two packets arrive at a router at the same time, the
router will transmit one and buffer the other

l If many packets arrive close in time
l the router cannot keep up à gets congested
l causes packet delays and drops

Recall: Lecture 3

Congestion is harmful

average
packet

delay

Load

Typical queuing system with bursty arrivals

Some History: TCP in the 1980s

l Sending rate only limited by flow control
l Dropped packets à senders retransmit, repeatedly!

l Led to “congestion collapse” in Oct. 1986

l Fixed by Karels and Jacobson’s development of
TCP’s congestion control (CC) algorithms

https://ee.lbl.gov/papers/congavoid.pdf

Van Jacobson

l Researcher in the networking group at LBL
l Many contributions to the early TCP/IP stack
l Creator of many widely used network tools

l traceroute, tcpdump, Berkeley Packet Filter, ...
l Later Chief Scientist at Cisco, now at Google

l Recently: BBR, a new TCP CC protocol used by Google

Their Approach
l Incremental extension to TCP’s existing protocol

l Source adjusts its window size based on observed packet loss

l A pragmatic and effective solution
l Required no upgrades to routers or applications!
l Patch of a few lines of code to BSD’s TCP implementation
l Quickly adopted and has been the de-facto approach since
l A lesson on wisdom in system design

l Extensively researched and improved upon
l Countless variants (we will not discuss)
l As well as radically different approaches (we’ll see a few next week)

CC more generally...

l Huge literature on the problem
l In systems, control theory, game theory, stats, econ

l Recent resurgence of interest in industry
l New pressure for high-performance (cloud services)
l New context (datacenters, new app workloads)
l New methods (ML)

8

Topics for today

l What makes CC a hard problem?
l Goals for a good solution
l Design space
l Components of a solution
l TCP’s approach (high level)

l Next week:
l TCP CC in detail
l Advanced topics in CC 9

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

*For this example, we’ll ignore the BW of links attaching hosts to routers

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

At what rate should Host A send traffic?

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on the destination

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Changes with routing dynamics

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Depends on “competing” flows

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

Including “indirect” competition!

Congestion Control

l Fundamentally, a resource allocation problem
l Flow is assigned a shared of the link BW along a path

l But more complex than traditional resource alloc.
l Changing one link’s allocation can have global impact
l And we’re changing allocations on every flow arrival/exit
l No single entity has a complete view or complete control!

l (Exception: within a datacenter)

l Allocations in our context are highly interdependent

Outline for today

l What makes CC a hard problem?
l Goals for a good solution
l Design space
l TCP’s approach (high level)
l Components of a solution

17

Goals

l From a resource allocation perspective
l Low packet delay and loss
l High link utilization
l “Fair” sharing across flows

Aim: a good tradeoff between the above goals

Goals

l From a resource allocation perspective
l Low packet delay and loss
l High link utilization
l “Fair” sharing across flows

l From a systems perspective
l Practical: scalable, decentralized, adaptive, etc.

Any questions?

Outline for today

l What makes CC a hard problem?
l Goals for a good solution
l Design space
l TCP’s approach (high level)
l Components of a solution

21

Possible Approaches

(0) Send at will

R1A F
10Gbps

What happens if A sends at 10Gbps?

R2 R3 R4
10Gbps 1Gbps10Gbps 10Gbps

Possible Approaches

(1) Reservations
l Pre-arrange bandwidth allocations
l Comes with all the problems we’ve discussed

Possible Approaches

(1) Reservations
(2) Pricing / priorities

l Don’t drop packets for the highest bidders/priority users
l Charge users based on current congestion levels
l Requires payment model

Possible Approaches

(1) Reservations
(2) Pricing / priorities
(3) Dynamic Adjustment

l Hosts dynamically learn current level of congestion
l Adjust their sending rate accordingly
l Many options for how to implement this basic idea

Possible Approaches

(1) Reservations
(2) Pricing / priorities
(3) Dynamic Adjustment

In practice, the generality of dynamic adjustment
has proven powerful
l Doesn’t presume business model
l Doesn’t assume we know app/user requirements
l But does assume good citizenship!

(1) First, host A discovers it can send at ~10Gbps
(2) A notices that ~10Gbps is congesting the network

(3) A figures out it should cut its rate to ~1Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

R1

R3

R7

R4

R2

R5

R6

A

B

C
D

E

FG

10Gbps

5Gbps

10Gbps

10Gbps

1Gbps

4Gbps

2Gbps 4Gbps

10Gbps4Gbps

(4) A notices that 1Gbps is congesting the network

(5) A figures out it should cut its rate to (say) ½ Gbps

Two broad classes of solutions

l Host-based CC
l No special support from routers
l Hosts adjust rate based on implicit feedback from routers

l Router-assisted CC
l Routers signal congestion back to hosts
l Hosts pick rate based on explicit feedback from routers

l We’ll study TCP’s host-based approach in detail
and a bit of router-assisted CC

à Jacobson’s original TCP approach

Taking stock:
where we are in the design space

Dynamic adjustment

CC

Reservations Pricing

Host-based Router-assisted

Coarse-
grained

Fine-
grained

Taking stock:
where we are in the design space

Dynamic adjustment

CC

Reservations Pricing

Host-based Router-assisted

Coarse-
grained

Fine-
grained

Sketch of a (host-based) solution

Each source independently runs the following:

l Pick initial rate R
l Try sending at a rate R for some period of time

l Did I experience congestion in this time period?
§ If yes, reduce R
§ If no, increase R

l Repeat

How do we pick the initial rate?

How do we detect congestion

By how much should
we increase/decrease

Components of a Solution

l Discovering an initial rate

l Detecting congestion

l Reacting to congestion (or lack thereof)
l Increase/decrease rules

Detecting Congestion?

l Packet loss
l Approach commonly used by TCP

l Benefits
l Fail-safe signal
l Already something TCP detects to implement reliability

l Cons
l Complication: non-congestive loss (e.g., checksum err.)
l Complication: reordering (e.g., with cumulative ACKs)
l Detection occurs after packets have experienced delay

Detecting Congestion?

l Increase in packet delay
l Long considered tricky to get right: packet delay

varies with queue size and competing traffic
l Google’s new BBR protocol is now challenging this

assumption (next week)

Note: Not All Losses the Same

l Duplicate ACKs: isolated loss
l Packets and ACKs still getting through
l Suggests mild congestion levels

l Timeout: much more serious
l Not enough packets/dupACKs getting through
l Must have suffered several losses

l We’ll see that TCP reacts differently in each case

Taking stock:
where we are in the design space

Dynamic adjustment

CC

Reservations Pricing

Host-based Router-assisted

Coarse-
grained

Fine-
grained

Loss-based Delay-based

Discovering an initial rate?

l Goal: estimate available bandwidth
l Start slow (for safety)
l But ramp up quickly (for efficiency)

l Toy example (of an inefficient solution)
l Add ½ Mbps every 100ms until we detect loss
l If available BW is 1Mbps, will discover rate in 200ms
l If available BW is 1Gbps, will take 200 seconds
l Either is possible!

Solution: “Slow Start”

l Start with a small rate (hence the name)
l Might be much less than actual bandwidth
l Linear increase takes too long to ramp up

l Increase exponentially until first loss
l E.g., double rate until first loss

l A ”safe” rate is half of that when first loss occurred
l I.e., if first loss occurred at rate R, then R/2 is safe rate

Components of a Solution

l Discovering an initial rate

l Detecting congestion

l Reacting to congestion (or lack thereof)
l Increase/decrease rules

Sketch of a solution

Each source independently runs the following:

l Pick initial rate R
l Try sending at a rate R for some time period

l Did I experience congestion in this time period?
§ If yes, reduce R
§ If no, increase R

l Repeat
By how much should

we increase/decrease?

Rate adjustment

l This is a critical part of a CC design!

l Determines how quickly a host adapts to
changes in available bandwidth

l Determines how effectively BW is consumed

l Determines how BW is shared (fairness)

42

Goals for rate adjustment

l Efficiency: High utilization of link bandwidth

l Fairness: Each flow gets equal share

How should we adjust rate?

l Infinite options...

l At the highest level: fast or slow

l Fast: multiplicative increase/decrease
l E.g., increase/decrease by 2x (R à 2R or R/2)

l Slow: additive increase/decrease
l E.g., increase/decrease by +1 (Rà R+1 or R-1)

44

Leads to four alternatives

l AIAD: gentle increase, gentle decrease

l AIMD: gentle increase, rapid decrease

l MIAD: rapid increase, gentle decrease

l MIMD: rapid increase, rapid decrease

45

Leads to four alternatives

l AIAD: gentle increase, gentle decrease

l AIMD: gentle increase, rapid decrease

l MIAD: rapid increase, gentle decrease

l MIMD: rapid increase, rapid decrease

46

Why AIMD? Intuition

l Consequences of sending too much are worse
than sending too little
l Too much: packets dropped and retransmitted
l Too little: somewhat lower throughput

l General approach:
l Gentle increase when uncongested (exploration)
l Rapid decrease when congested

47

Why AIMD? In more detail...

l Consider a simple model
l Two flows going over single link of capacity C
l Sending at rates X1 and X2 respectively

l When X1+X2 > C, network is congested
l When X1+X2 < C, network is underloaded

l Would like both:
l X1 + X2 = C à link is fully utilized with no congestion
l X1 = X2 à sharing is “fair”

48

Simple Model, C=1

User 1’s rate (x1)

U
se

r 2
’s

 ra
te

 (x
2)

Fairness line
(x1 =x2)

Efficiency line
(x1+x2 = 1)

1

1

l Two users with
rates x1 and x2

l Congestion when
x1+x2 > 1

l Unused capacity
when x1+x2 < 1

l Fair when x1 =x2

co
ngeste

d à

ß
ineffic

ient

Example Allocations, C=1

x1

x 2
fairness

line

efficiency
line

1

1

Inefficient: x1+x2=0.7

(0.2, 0.5)

Congested: x1+x2=1.2

(0.7, 0.5)

Efficient: x1+x2=1
Fair

(0.5, 0.5)

Efficient: x1+x2=1
Not fair

(0.7, 0.3)

Example Adjustments

x1

x 2

1

1

(x1, x2)

(x1-a, x2-a)

(x1+b, x2+b)

Line with slope = 1

Example Adjustments

x1

x 2

1

1

(x1, x2)

(cx1, cx2)

Line with slope = x2/x1

(x1/d, x2/d)

Our Four Options

l AIAD: gentle increase, gentle decrease

l AIMD: gentle increase, rapid decrease

l MIAD: rapid increase, gentle decrease

l MIMD: rapid increase, rapid decrease

l And now apply our simple model!

53

AIAD Dynamics

l Consider: Increase: +1 Decrease: -2

l Start at X1 = 1, X2 = 3, with C = 5

l First iteration: no congestion
l X1 → 2, X2 → 4

l Second iteration: congestion
l X1 → 0, X2 → 2

l Third iteration: no congestion
l X1 → 1, X2 → 3

l …

Back where we started!
à Gap between X1 and X2

didn’t change at all

AIAD
l Increase: x + a
l Decrease: x - b

l Does not
converge to
fairness

User 1: x1

U
se

r 2
: x

2

fairness
line

efficiency
line

(x1,x2)

(x1-b, x2-b)

(x1-b+a, x2-b+a)

MIMD Dynamics
l Consider: Increase: ×2 Decrease: ÷ 4

l Start at X1 = ½, X2 = 1, with C = 5

l First iteration: no congestion
l X1 → 1, X2 → 2

l Second iteration: no congestion
l X1 → 2, X2 → 4

l Third iteration: congestion
l X1 → ½ , X2 → 1

l …
56Again, no improvement in fairness

MIMD
l Increase: x × bI

l Decrease: x × bD

l Does not
converge to
fairness

User 1: x1

U
se

r 2
: x

2

fairness
line

efficiency
line

(x1,x2)

(bdx1,bdx2)

(bIbDx1,
bIbDx2)

co
ngeste

d à

ß
ineffic

ient

MIAD Dynamics

l Consider: Increase: ×2 Decrease: −1
l Start at X1 = 1, X2 = 3, with C = 5

l First iteration: no congestion; X1 → 2, X2 → 6
l Second iteration: congestion; X1 → 1, X2 → 5
l Third iteration: congestion; X1 → 0, X2 → 4
l Fourth iteration: no congestion; X1 → 0, X2 → 8

X1 pegged at 0; MIAD is maximally unfair!
58

AIMD Dynamics
l Consider: Increase:+1 Decrease: ÷ 2
l Start at X1 = 1, X2 = 2, with C = 5

l First iteration: no congestion: X1 → 2, X2 → 3
l Second: no congestion: X1 → 3, X2 → 4
l Third: congestion: X1 → 1.5, X2 → 2
l Fourth: no congestion: X1 → 2.5, X2 → 3
l Fifth: congestion: X1 à 1.25, X2 à 1.5
l Sixth: no congestion: X1 à 2.25, X2 à 2.5
l Seventh: no congestion: X1 à 3.25, X2 à 3.5
l Eighth: congestion: X1 à 1.625, X2 à 1.75
l Ninth: no congestion: X1 à2.625, X2à 2.75

Diff = 1

Diff = 1
Diff = 1

Diff = 0.5
Diff = 0.5

Diff = 0.25
Diff = 0.25
Diff = 0.25

Diff = 0.125
Diff = 0.125

AIMD

l Difference between X1 and X2 decreasing!
l Difference stays constant when increasing
l Halves every time there is a decrease

60

(bDx1+aI,
bDx2+aI)

AIMD
l Increase: x+aI

l Decrease: x*bD

l Converges to
fairness

User 1: x1

U
se

r 2
: x

2

fairness
line

efficiency
line

(x1,x2)

(bDx1,bDx2)

co
ngeste

d à

ß
ineffic

ient

Answer to Why AIMD?

l AIMD embodies gentle increase, rapid decrease

l AIMD only choice that drives us towards “fairness”

l Out of the four options
l AIAD, MIMD: retain unfairness
l MIAD: maximally unfair
l AIMD: fair and appropriate gentle/rapid actions

62

Any Questions?

63

Sketch of a solution

Each source independently runs the following:

l Pick initial rate R
l Try sending at a rate R for some time period

l Did I experience congestion in this time period?
§ If yes, reduce R
§ If no, increase R

l Repeat

Sketch of TCP’s solution

Each source independently runs the following:

l Pick initial rate R
l Try sending at a rate R for some time period

l Did I experience congestion in this time period?
§ If yes, reduce R
§ If no, increase R

l Repeat

Sketch of TCP’s solution

Each source independently runs the following:

l Slow-start to find initial rate
l Try sending at a rate R for some time period

l Did I experience congestion in this time period?
§ If yes, reduce R
§ If no, increase R

l Repeat

Sketch of TCP’s solution

Each source independently runs the following:

l Slow-start to find initial rate
l Try sending at a rate R for some time period

l Did I experience congestion loss in this time period?
§ If yes, reduce R
§ If no, increase R

l Repeat

Sketch of TCP’s solution

Each source independently runs the following:

l Slow-start to find initial rate
l Try sending at a rate R for some time period

l Did I experience congestion loss in this time period?
§ If yes, reduce R multiplicatively (2x)
§ If no, increase R additively (+1)

l Repeat

Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Rate
Multiplicative

decrease

Additive
increase

Next time: details of TCP CC

l Our overall approach with a few key differences
l Based on adjusting window size on timescale of RTT
l Different reactions for timeouts (severe loss) vs.

duplicate ACKs (isolated loss)
l Slow-start used on timeout as well as at beginning
l Optimization for the case of isolated loss

