TCP Congestion Control

CS 168

Sylvia Ratnasamy

http://cs168.io/

Last time:

e \We narrowed our exploration of the design space
to a CC solution that is based on:
Implemented only by end-hosts
Dynamic rate adjustment
Uses loss to detect congestion

e Today: TCP CC

An example of the above design

Plan

e Review TCP’s window-based operation
e Extending the above for CC

Review:

e Sender maintains a window of packets in flight

e \Window size W is picked to balance three goals
Take advantage of network capacity (“fill the pipe”)
Avoid overloading the receiver (flow control)

Avoid overloading links (congestion control)

Review:

Sender maintains a window of packets in flight

Window size W is picked to balance three goals

e Avoid overloading the receiver (flow control)
e Avoid overloading links (congestion control)

Flow control: sender maintains an advertised window: also
called a receiver window (RWND)

CC: sender maintains a congestion window (CWND)

All These Windows...

e Congestion Window: CWND

How many bytes can be sent without overloading links
Computed by the sender using CC algorithm

e Flow control window: RWND

How many bytes can be sent without overflowing the
receiver’s buffers

Implemented by having the receiver tell the sender

e Sender-side window = min{CWND, RWND}
Assume for this lecture that RWND > CWND

Note

e Recall: TCP operates on bytestreams
e Hence, real implementations maintain CWND in bytes

e This lecture will talk about CWND in units of MSS

MSS: Maximum Segment Size, the max number of bytes of data
that one TCP packet can carry in its payload

This is only for pedagogical purposes

Review:

sent & ACKed Not yet

\ ® transmitted

| |

i+ W

Sender maintains a sliding window of W contiguous bytes

Sender maintains a single timer, for the LHS of window
On timeout, sender retransmits the packet starting atil 7))

Review:

T T T

i J i+W j+Ww

Receiver sends cumulative ACKs; sender counts #dupACKs
Fast Retransmit: Sender retransmits when #dupACKs = 3

Sender slides window on receiving an ACK for new data (/ >4)

Extending TCP with CC

e Add a congestion window parameter (CWND)
e Adapt CWND based on current congestion level

e How do we adapt CWND?

e Last lecture: how sender adapts its transmission rate

e In TCP, sender’s rate is simply CWND/RTT
e (Since we’re assuming RWND > CWND)

e Adapting CWND every RTT - adapting sender’s afe

Recall: how we adapt rate

e Detecting congestion
e Loss-based

e Discovering an initial rate
o Slow start

e Adapting rate to congestion (or lack thereof)
e AIMD

What follows is all about how TCP implements the above

Theme: CWND updates driven by ACK arrivals (*ACK clock 'ng’)

ACK Clocking

e A new ACK advances the sliding window and lets a
new data segment enter the network

e |l.e., ACKs “clock” data segments

e \What's the benefit of ACK clocking?

ACK Clocking

R1 M
@ 10Gbps |:’| 1Gbps 10Gbps @

ACK Clocking

S ===l

= T 1 1

Consider: source sends a burst of packets
Packets are queued and “spread out” at slow link -

ACKs maintain the spread on the return path © *))

/

ACK Clocking

o Tl T

~ P 1 1

Sender clocks new packets with the spread

Now sending without queuing at the bottleneck link! = *

Recall: how we adapt rate

e Detecting congestion
e Loss-based

e Discovering an initial rate
o Slow start

e Adapting rate to congestion (or lack thereof)
e AIMD

What follows is all about how TCP implements the above

Theme: CWND updates driven by ACK arrivals (*ACK clock 'ng’)

How TCP Detects Loss

e 3 duplicate ACKs: typically indicates isolated loss

e Timeout: typically indicates loss of several packets

How TCP Implements Slow Start

e Sender starts at a slow rate; increases rate
exponentially until first loss

e In TCP: start with a small CWND =1 (MSS)
So, initial sending rate is MSS/RTT

e Then double CWND every RTT until first loss

e Implemented as: On each ACK: CWND += 1 (MSS)

Slow Start in Action

Goal: Double CWND every round-trip time
Simple implementation: On each ACK, CWND +=1 (MSS)

CWND=1 CWND=2 CWND=3 CWND=4 ... CWND=8
Src =0 D Y w1
D1 A D2\ D A2/ A3 D4 D5 D6 D v

AA A
Dest

How TCP Implements Slow Start
(contd.)

e Double CWND every RTT until first loss

e Introduce a “slow start threshold” parameter
o SSTHRESH, used to remember last “safe” rate

e On first loss: SSTHRESH = CWND/2

Recall: how we adapt rate

e Adapting rate to congestion (or lack thereof)
e AIMD

AIMD in TCP

e Additive increase:
e No loss - increase CWND by 1 MSS every RTT

e Multiplicative decrease
e Loss detected by 3 dupACKs - divide CWND in half

e \What about timeouts? Will exit AIMD (coming up)

Implementing Additive Increase

e Implementation works by adding a fraction of an
MSS every time we receive an ACK

e On receiving an ACK (for new data)

1
o CWND - CWND t s

o CWND —» CWND + MSS X

MSS
CWND

if counting CWND in bytes

e NOTE: after full window, CWND increases by 1 MSS
e Thus, CWND increases by 1 MSS per RTT

Implementing Multiplicative Decrease

e On receiving 3 dupACK:
o CWND _)CWND

On Timeout

e Rationale: lost multiple packets in a window

Current CWND may be way off
Hence, need to rediscover a good rate from scratch

Design decision that errs on the side of caution

e Hence, on timeout:
e Retransmit first missing packet (as usual)

e Set SSTHRESH « WAD

2
e Set CWND « 1 MSS & enter Slow Start mode

Slow-Start vs. AIMD

e WWhen does a sender stop Slow-Start and start
Additive Increase?

e Determined by SSTHRESH

e When CWND > SSTHRESH, sender switches
from slow-start to AIMD’s additive increase

Summary of Decrease

e Cut CWND in half on loss detected by dupACKs

e Cut CWND all the way to 1 (MSS) on timeout

e Never drop CWND below 1 (MSS)

Summary of Increase

e When in Slow-Start phase
Increase CWND by 1 MSS for each new ack

e When in AIMD phase

Increase by 1 (MSS) for each window’s worth of acked data

TCP Congestion Control Details

In what follows refer to CWND in units of MSS

Implementation

e State at sender
CWND (initialized to a 1 MSS)
SSTHRESH (initialized to a large constant)
dupACKcount (initialized to zero, as before)
Timer (as before)

e Events at sender
ACK (for new data)
dupACK (duplicate ACK for old data)
Timeout

e \What about receiver?
Just send ACKs like before

Event: ACK (new data)

e If in slow start « CWND packets per RTT
e CWND +=1 (MSS) * Hence after one RTT

with no drops:
CWND = 2xCWND

Event: ACK (new data)

—_

e If In slow start
e CWND +=1 (MSS)

— Slow start phase

——

o Else CHamgs%EieBer RTT
noidénoeé Phase
e CWND = CWND + 1/CWND wHdgigvesSncrease)
CWND = CWND + 1
e Plus the usual ...

e Resettimer, dupACKcount
e Send new data packets (if CWND allows)

Event: TimeOut

e On Timeout
e SSTHRESH < CWND/2
e CWND < 1
e And retransmit packet (as always)

Event: dupACK

e dupACKcount ++

e If dupACKcount = 3 /* fast retransmit */

e SSTHRESH = CWND/2
e CWND = CWND/2 (but never less than 1)

e And retransmit packet o< always)

Remain in AIMD

after fast retransmission...

Any Questions?

Time Diagram

Window

Fast Timeout ggThresh
Retransmission Set to Here

A

Slow start in operation until
CWND crosses SSTHRESH

One Final Phase: Fast Recovery

e The problem: congestion avoidance too slow in
recovering from an isolated loss

e This last feature is an optimization to improve
performance

Bit of a hack, but effective

Example

e Again: counting packets, not bytes

If you want example in bytes, assume MSS=1000 and add three
zeros to all sequence numbers

e Consider a TCP connection with:
CWND=10 packets

Last ACK was for packet # 101
l.e., receiver expecting next packet to have seq. no. 101

e 10 packets [101, 102, 103,..., 110] are in flight

Packet 101 is dropped

What ACKs do they generate and how does the sender respond?

Timeline (at sender)

In flight:xm, 102, 103, 104, 105, 106, 107, 108, 109, 110 101

e ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
e ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
e ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
e RETRANSMIT 101 ssthresh=5 cwnd=5
e ACK 101 (due to 105) cwnd=5 (no xmit)

(
e ACK 101 (due to 106) cwnd=5 (no xmit) Note that you do not
o ACK 101 (due to 107) cwnd=5 (no xmit) ~ restart dupACK counter
e ACK 101 (due to 108) cwnd=5 (no xmity O Same packet!
e ACK 101 (due to 109) cwnd=5 (no xmit)
e ACK 101 (due to 110) cwnd=5 (no xmit)

e ACK 111 (due to 101) € only now can we transmit new packets
e Plus no packets in flight so ACK “clocking” stalls for another RTT

Two Questions

e Do you understand the problem?

Have to wait a long time before sending again
When you finally send, you have to send full window

e How would you fix it?

Solution: Fast Recovery

|dea: Grant the sender temporary “credit” for each dupACK
so as to keep packets in flight

e If dupACKcount =3
e SSTHRESH = CWND/2
e CWND =SSTHRESH + 3

e While in fast recovery
e CWND =CWND + 1 (MSS) for each additional duplicate ACK
e This allows source to send an additional packet...
e ...to compensate for the packet that arrived (generating dupACK)

e EXxit fast recovery after receiving new ACK
e set CWND = SSTHRESH -

Timeline (at sender)

In fIight:X01, 102, 103, 104, 105, 106, 107, 108, 109, 110 101 111,112, ...

e ACK 101 (due to 102) cwnd=10 dupACK#1
e ACK 101 (due to 103) cwnd=10 dupACK#2
e ACK 101 (due to 104) cwnd=10 dupACK#3
e REXMIT 101 ssthresh=5 cwnd= 8 (5+3)

e ACK 101 (due to 105) cwnd= 9 (no xmit)

e ACK 101 (due to 106) cwnd=10 (no xmit)

e ACK 101 (due to 107) cwnd=11 (xmit 111)
e ACK 101 (due to 108) cwnd=12 (xmit 112)
e ACK 101 (due to 109) cwnd=13 (xmit 113)
e ACK 101 (due to 110) cwnd=14 (xmit 114)
e ACK 111 (due to 101) cwnd = 5 (xmit 115) <€ exiting fast recovery

e Packets 111-114 already in flight (and now sending 115) C
e ACK 112 (dueto 111) cwnd =5 + 1/5 < back in congestion avoidance

N N’ N N N S’

Updated Event-Actions

Event: ACK (new data)

—

e If in slow start

— Slow start phase
e CWND +=1 (MSS)

e If in fast recovery :
Leaving Fast
e CWND = SSTHRESH > Recovery

e Else .

s CWND = CWND + 1/CWND Congestion

— Avoidance” phase
(additive increase)

e Plus the usual... b))

Event: dupACK

e dupACKcount ++

e If dupACKcount = 3 /* fast retransmit */
e ssthresh = CWND/2
e CWND = CWND/2 +3
e And retransmit packet

e If dupACKcount > 3 /* fast recovery */
e CWND = CWND + 1 (MSS)

Next: TCP State Machine

TCP State Machine

timeout
new ACK
dupACK slow CWND > SSTHRESH | congestion7
| 3
start imeout avoidance
new ACK dupACK
dupACK=3 dupACK=3
new AC
timeout
fast

dupACK recovery

Many variants

e TCP-Tahoe
CWND =1 on triple dupACK

e TCP-Reno
CWND =1 on timeout }

CWND = CWND/2 on triple dupack (Our default
assumption

e TCP-newReno -
TCP-Reno + improved fast recovery

e TCP-SACK

incorporates “selective acknowledgements”
ACKs describe byte ranges received -

Interoperability

e How can all these algorithms coexist? Don’t we
need a single, uniform standard?

e \What happens if I'm using Reno and you are
using Tahoe, and we try to communicate?

e \What happens if I'm using Tahoe and you are
using SACK?

Next Lecture

e Modeling TCP
e Advanced congestion control techniques

