
Project 2: Transport

l You will implement the core parts of a TCP socket (Discussion#3)

l Use a network simulator (by Murphy McCauley & others at NetSys)
to test, validate, and interact with your socket implementation

l The project is split and scored by (9) stages

l The goal is to guide you through the basic procedures of the TCP
protocol, e.g., three-way handshake, reassembly of out-of-order
packets, packet retransmission, and passive/active close

l Due: 11:59pm, Nov. 11th. Logistics & OH will be announced on Ed

Announcement#1: Lectures 18-21

l Will release lecture recordings by Murphy

l Topics: DNS, HTTP, Ethernet, discovery protocols

l No in-person lectures: 10/27, 11/1, 11/3

l Flipped lecture on 11/08

l Reminder and details will be posted on Ed

Congestion Control:
Advanced Topics

CS 168
http://cs168.io

Sylvia Ratnasamy

This content is protected and may not be shared, uploaded or distributed.

http://cs168.io/

Last Time
l The gory details of TCP CC

Today
l Modeling TCP
l Critiquing TCP
l Router-assisted CC

l We’ll cover a broad range of design ideas
l Focus on the why and key insight behind the how
l Don’t worry about the details

TCP Throughput Equation

TCP Throughput

l Given a path, what TCP throughput can we expect?

l We’ll derive a simple model that expresses TCP
throughput in terms of path properties:
l RTT
l Loss rate, p

l Assume loss occurs whenever CWND reaches 𝑊#$%
l And is detected by duplicate ACKs (i.e., no timeouts)

l Hence, evolution of window size:
l

&
'
𝑊#$% (after detecting loss)

l
&
'𝑊#$% +1 (one RTT later)

l
&
'
𝑊#$% +2 (two RTTs later)

l
&
'
𝑊#$% +3 (three RTTs later)

l ...
l 𝑊#$% [drop]

l
&
'
𝑊#$%

l
&
'
𝑊#$% +1

A Simple Model for TCP Throughput

l Assume loss occurs whenever CWND reaches 𝑊#$%
l And is detected by duplicate ACKs (i.e., no timeouts)

l Hence, evolution of window size:
l

&
'
𝑊#$% ,

&
'
𝑊#$% +1, &

'
𝑊#$% +2 , ... , 𝑊#$% [drop] , &

'
𝑊#$% ,

&
'
𝑊#$% +1 , ...

l Increase by 1 for &
'
𝑊#$% RTTs, then drop, then repeat

l Average window size per RTT =)
*𝑊#$%

l Average throughput =)*𝑊#$% x +,,-..

l Remaining step: express 𝑊#$% in terms of loss rate p	

A Simple Model for TCP Throughput

time

A

A Simple Model for TCP Throughput
Losscwnd

1

RTT

maxW

2
maxW

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTT

On average, one of all packets in shaded region is lost
(i.e., loss rate is 1/A, where A is #packets in shaded region)

𝑝 =
1
𝐴Packet drop rate,

A

A Simple Model for TCP Throughput
Loss

time

cwnd

maxW

2
maxW

𝑝 =
1
𝐴Packet drop rate,

3
8
𝑊#$%'A =

Average Throughput =

à𝑊#$% =
' '
)6

3
4 𝑊#$%×𝑀𝑆𝑆

𝑅𝑇𝑇

½ Wmax RTTs between drops

=
=
>
? ?
=@ ×+,,

-..
=)

'
ABB
CDD 6

Avg. ¾ Wmax packets per RTT

TCP Throughput

l Given a path, what TCP throughput can we expect?

l TCP throughput is proportional to &
CDD

and &
6

l RTT is path round-trip time and p	is the packet loss rate

l Model makes many simplifying assumptions
l Ignores slow-start, assumes fixed RTT, isolated loss, etc.

l But leads to some insights (coming up)

Taking Stock: TCP CC

l (Sender) host based
l Loss based
l Adapts every RTT
l Starts out in slow start (start small, double every RTT)
l Adapts based on AIMD (gentle increase, rapid decrease)
l TCP throughput depends on path RTT and loss rate

Throughput =)
'

ABB
CDD 6

Implications (1): Different RTTs

l Flows get throughput inversely proportional to RTT
l TCP unfair in the face of heterogeneous RTTs!

A1

A2 B2

B1

bottleneck
link

100ms

200ms

Throughput =)
'

ABB
CDD 6

Implications (2): High Speed TCP

l Assume BW=100Gbps, RTT = 100ms, MSS=1500B

l Value of p required to reach 100Gbps throughput: 2 x 10-12

l Requires dropping only one out of 50 billion packets!
l Going ~16.6 hours between drops

l These are not practical numbers

l Problem: scaling a single flow to high throughput is very
slow with additive increase

Throughput =)
'

ABB
CDD 6

HighSpeed TCP [RFC 3649]

l Once past a threshold speed, increase CWND faster
l Make the increase rule a function of CWND

l Other approaches?
l Multiple simultaneous connections (workaround)
l Router-assisted approaches (will see shortly)

Implications (3): Rate-based CC [RFC 5348]

l TCP throughput is “choppy”
l repeated swings between W/2 to W

l Some apps would prefer sending at a steady rate
l e.g., streaming apps

l A solution: Equation-based Congestion Control
l ditch TCP’s increase/decrease rules and just follow the equation
l measure RTT and drop percentage p, and set rate accordingly

l Following the TCP equation ensures we’re “TCP friendly”
l i.e., use no more than TCP does in similar setting

Throughput =
)
'

&
CDD 6

Other Limitations of TCP
Congestion Control

(4) Loss not due to congestion?

l TCP will confuse corruption with congestion

l Flow will cut its rate
l Throughput ~ &

6
even for non-congestion losses!

(5) How do short flows fare?

l 50% of flows have < 1500B to send; 80% < 100KB

l Implication (1): many flows never leave slow start!
l Short flows never attain their fair share
l In fact, short flows are likely to suffer unduly long transfer times

l Implication (2): too few packets to trigger dupACKs
l Isolated loss may lead to timeouts
l At typical timeout values of ~500ms, might severely impact

flow completion time

l A partial fix: use a higher initial CWND [Google IW10]

(6) TCP fills up queues à long delays

l A flow deliberately overshoots capacity, until it
experiences a drop

l Recall: loss follows delay (i.e,. queue must fill up)

l Means that delays are large, for everyone
l Consider a flow transferring a 10GB file sharing a

bottleneck link with 10 flows transferring 100B

l Problem exacerbated by the trend towards adding large
amounts of memory on routers (a.k.a. “bufferbloat”)

(6) TCP fills up queues à long delays

l Focus of Google’s BBR algorithm1

l Basic idea (simplified):
l Sender learns its minimum RTT (~ propagation RTT)
l Decreases its rate when the observed RTT exceeds the

minimum RTT

1 BBR: Congestion-Based Congestion Control; Cardwell et al, ACM Queue 2016

https://queue.acm.org/detail.cfm?id=3022184

(7) Cheating

l Three easy ways to cheat
l Increasing CWND faster than +1 MSS per RTT

Increasing CWND Faster

Limit rates:
x = 2y

C

x

y
x increases by 2 per RTT
y increases by 1 per RTT

(7) Cheating

l Three easy ways to cheat
l Increasing CWND faster than +1 MSS per RTT
l Opening many connections

Open Many Connections

A Bx

D Ey

Assume
• A starts 10 connections to B
• D starts 1 connection to E
• Each connection gets about the same throughput

Then A gets 10 times more throughput than D

(7) Cheating

l Three easy ways to cheat
l Increasing CWND faster than +1 MSS per RTT
l Opening many connections
l Using large initial CWND

Why hasn’t the Internet suffered
another congestion collapse?

l Even “cheaters” do back off!
l Leads to unfairness, not necessarily collapse

l Hard to say whether unfair behavior is common

(8) CC intertwined with reliability

l Mechanisms for CC and reliability are tightly coupled
l CWND adjusted based on ACKs and timeouts
l Cumulative ACKs and fast retransmit/recovery rules

l Complicates evolution
l Consider changing from cumulative to selective ACKs
l A failure of modularity, not layering

l Sometimes we want CC but not reliability
l e.g., real-time applications

l Sometimes we want reliability but not CC (?)

Recap: TCP problems

l Misled by non-congestion losses
l Fills up queues leading to high delays
l Short flows complete before discovering available capacity
l AIMD impractical for high speed links
l Sawtooth discovery too choppy for some apps
l Unfair under heterogeneous RTTs
l Tight coupling with reliability mechanisms
l Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endpoints
if they’re congested

Routers tell
endpoints what
rate to send at

Routers enforce
fair sharing

Router-Assisted Congestion Control

l Three ways routers can help
l Enforce fairness
l More precise rate adaptation
l Detecting congestion

How can routers ensure each flow gets
its “fair share”?

Fairness: General Approach

l Consider a single router’s actions

l Router classifies incoming packets into “flows”
l (For now) let’s assume flows are TCP connections

l Each flow has its own FIFO queue in router

l Router picks a queue (i.e., flow) in a fair order; transmits
packet from the front of the queue

l What does “fair” mean exactly?

Max-Min Fairness

l Total available bandwidth C

l Each flow i has bandwidth demand ri

l What is a fair allocation ai		of bandwidth to each flow i ?

l Max-min bandwidth allocations are:

ai		=	min(f,	ri)	

where f	is the unique value such that Sum(ai)	=	C

r1

r2

r3

?
?

?
C bits/s

Example
l C = 10; N = 3; r1 = 8, r2 = 6, r3 = 2

l C/N = 10/3 = 3.33 ®
l But r3’s need is only 2
l Can service all of r3

l Allocate 2 to r3 and remove it from accounting: C = C – r3 = 8; N = 2

l C/2 = 4 ®
l Can’t service all of r1 or r2

l So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

Max-Min Fairness

l Property:
l If you don’t get full demand, no one gets more than you

l This is what round-robin service gives if all
packets are the same size

How do we deal with packets of
different sizes?

l Mental model: Bit-by-bit round robin (“fluid flow”)

l Cannot do this in practice!

l But we can approximate it
l This is what “fair queuing” routers do

Fair Queuing (FQ)

l For each packet, compute the time at which the last bit
of a packet would have left the router if flows are served
bit-by-bit (called “deadlines”)

l Then serve packets in increasing order of their deadlines

l Think of it as an implementation of round-robin extended
to the case where not all packets are equal sized

Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid
system

FQ
Packet
system

time

time

time

time

FQ vs. FIFO
l FQ advantages:

l Isolation: cheating flows don’t benefit
l Bandwidth share does not depend on RTT
l Flows can pick any rate adjustment scheme they want

l Disadvantages:
l More complex than FIFO: per flow queue/state,

additional per-packet book-keeping
l Still only a partial solution (coming up)

Fair Queuing In Practice

l “Pure” FQ too complex to implement at high speeds

l But several approximations exist
l E.g., Deficit Round Robin (DRR)

l Today:
l Routers typically implement approximate FQ (e.g., DRR)
l For a small number of queues
l Commonly used for coarser-grained isolation (e.g., for

select customer prefixes) rather than per-flow isolation

FQ in the big picture

l FQ does not eliminate congestion à it just
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get
0.5Gbps; any excess

will be dropped

Will drop an additional
400Mbps from
the green flow

If the green flow doesn’t drop its sending
rate to 100Mbps, we’re wasting 400Mbps

that could be usefully given to the blue flow

FQ in the big picture

l FQ does not eliminate congestion à it just
manages the congestion

l FQ’s benefit is its resilience (to cheating, variations
in RTT, details of delay, reordering, etc.)

l But congestion and packet drops still occur

l And we still want end-hosts to discover/adapt to
their fair share!

Per-flow fairness is a controversial goal

l What if you have 8 flows, and I have 4?
l Why should you get twice the bandwidth

l What if your flow goes over 4 congested hops, and mine
only goes over 1?
l Shouldn’t you be penalized for using more of scarce bandwidth?

l And at what granularity do we really want fairness?
l TCP connection? Source-Destination pair? Source?

l Nonetheless, FQ/DRR is a great way to ensure isolation
l Avoiding starvation even in the worst cases

Router-Assisted Congestion Control

l Three ways routers can help
l Enforce fairness
l More precise rate adaptation
l Detecting congestion

Why not just let routers tell endhosts
what rate they should use?

l Packets carry “rate field”

l Routers insert a flow’s fair share f in packet header

l End-hosts set sending rate (or window size) to f

l This is the basic idea behind the “Rate Control
Protocol” (RCP) from Dukkipati et al. ’07

46

Flow Completion Time: TCP vs. RCP (Ignore XCP)

Flow Completion Time (secs) vs. Flow Size

RCP

FC
T

Why the improvement?

Router-Assisted Congestion Control

l Three ways routers can help
l Enforce fairness
l More precise rate adaptation
l Detecting congestion

Explicit Congestion Notification (ECN)

l Single bit in packet header; set by congested routers
l If data packet has bit set, then ACK has ECN bit set

l Many options for when routers set the bit
l Tradeoff between link utilization and packet delay

l Host can react as though it was a drop

l Advantages:
l Don’t confuse corruption with congestion
l Early indicator of congestion à avoid delays
l Lightweight to implement

l Today:
l Widely implemented in routers
l Some use in datacenters (e.g., Azure)

Final idea: Congestion-Based Charging

l Use ECN as congestion markers

l Whenever I get an ECN bit set, I have to pay $$
l The more congested the network, the more I pay

l No debate over what a flow is, or what fair is…

l Idea started by Frank Kelly at Cambridge
l “optimal” solution, backed by much math
l Great idea: simple, elegant, effective
l But requires an entirely new charging model!

Recap: Router-Assisted CC

l FQ: routers enforce per-flow fairness

l RCP: routers inform endhosts of their fair share

l ECN: routers set “I’m congested” bit in packets

l Congestion pricing: users pay based on congestion

Perspective: Router-Assisted CC

l Can be highly effective, approaching optimal perf.

l But deployment is more challenging
l Need support at hosts and routers
l Some require more complex book-keeping at routers
l Some require deployment at every router

l Though worth revisiting in datacenter contexts

Perspective: TCP CC

l Not perfect, a little ad-hoc

l But deeply practical/deployable

l Good enough to have raised the bar for the
deployment of new, more optimal, approaches

l Though datacenters are reshaping the CC agenda
l different needs and constraints (future lecture)

Next Topics

l The Domain Name System (DNS) and resolving
names to addresses

l Remember: no in-person lecture on Thursday

