
DNS
The Domain Name System

Today in CS

● 31 years ago, John Backus passed away

● Won the National Medal of Science
● Won the ACM Turing Award

● Led the team that developed FORTRAN
● He’s the B in “BNF” notation for context-free grammars

 <postal-address> ::= <name-part> <street-address> <zip-part>

 <name-part> ::= <personal-part> <last-name> <opt-suffix-part> <EOL> | <personal-part> <name-part>

 <personal-part> ::= <initial> "." | <first-name>

 <street-address> ::= <house-num> <street-name> <opt-apt-num> <EOL>

 <zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>

<opt-suffix-part> ::= "Sr." | "Jr." | <roman-numeral> | ""

 <opt-apt-num> ::= <apt-num> | ""

(BNF examples from Wikipedia and RFC 2616)

Where are we?

● Foundations / principles
● e.g., Packet switching, end-to-end

● Domain structure of the Internet and…
● routing within domains
● routing between domains

● Deep dive on IP and TCP
● What packets are actually composed of (at L3 and L4)
● How to make an unreliable network (look) reliable

● Today we start looking at things which are more user-facing

The Domain Name System (DNS)

● Overview
● Introduction
● Name lookup

● Digging into the Details
● API, servers, and protocol
● A and NS records
● How domain names are born

● More DNS
● Record types and use cases

● A DNS case study
● Minecraft and SRV records

● Availability, Scalability, and Performance
● AKA four ways to add more servers

● DNS skepticism
● Did we name the right thing?
● Does this thing work right?
● Is your privacy safe?
● Does DNS matter?

Thinking back…

● Three early “killer apps” of the Internet (or its precursor, the ARPANET)

● Remote terminal
● From local machine, log in to a machine somewhere else (like ssh)
● telnet <remote host>

● File transfer
● From local machine, transfer files to/from a remote machine
● ftp <remote host>

● Email
● Send/receive messages to/from user of a remote machine
● mail <user>@<remote host>

● .. but numerical host addresses are not so nice for humans!
● Nobody wants to type telnet 46.0.0.10 !

Numerical addresses vs. humans

● Solution: create an “address book” of host names and their addresses
● Maintained by Elizabeth Jocelyn "Jake" Feinler at the Network Information

Center (NIC) at SRI
● If you wanted a hostname, phone Jake Feinler, she’d enter it in database

● Originally human-readable

Address Hostname Computer Status/System
--
 148 ETAC-TIP TIP
 21 LLL-RISOS PDP-11/45 User/RATS
 22 ISI-SPEECH11 PDP-11/45 User 1/74
 86 USC-ISI PDP-10 Server/TENEX
 150 ISI-DEVTENEX PDP-10 User 1/74/TENEX
 23 USC-44 IBM 360/44 Server
 151 USC-TIP TIP
 152 GWC-TIP TIP
 153 DOCB-TIP TIP
 26 SDAC-44 IBM 360/44 User
 154 SDAC-TIP TIP
 28 ARPA-DMS PDP-15 User
 156 ARPA-TIP TIP
 29 BRL PDP-11/40 User/ANTS
 158 BBN-TESTIP TIP
 31 CCA-TENEX PDP-10 dedicated Server/TENEX
 95 LL-LANTS PDP-11/40 User 2/74/ANTS
 159 CCA-TIP TIP
 32 PARC-MAXC (Nova)->MAXC limited Server/TENEX
 96 PARC-VTS Nova 800 User
 160 PARC-11 PDP-11 User 1/74
 33 FNWC CDC 6500 2/74
 161 FNWC-TIP TIP
 98 UCB PDP-11/45 User 1/74
 35 UCSD-CC B6700 Server
 36 HAWAII-ALOHA HP 2100 12/73
 100 HAWAII- 500 BCC 500 1/74
 164 ALOHA-TIP TIP
 165 RML-TIP TIP
 40 BBN-NCC H-316 User
 168 NCC-TIP TIP
 232 BBN-1D PDP-1 User
 169 NORSAR-TIP TIP
 42 UKICS-360 IBM 360/195 limited Server
 170 UKICS-TIP TIP
 43 OFFICE-1 PDP-10 dedicated Server/TENEX, NLS
 171 TYMSHARE-TIP TIP
 44 MIT-MULTICS H-6180 Server 12/17/73/Multics
 174 RUTGERS-TIP TIP
 175 WPAFB-TIP TIP

Address Hostname Computer Status/System
--
 001 UCLA-NMC PDP-11/45 User 1/1/74/ANTS
 65 UCLA-CCn IBM 360/91 Server
 129 UCLA-CCBS PDP-10 limited Server
 2 SRI-ARC PDP-10 dedicated Server/TENEX, NLS
 66 SRI-AI PDP-10 limited Server/TENEX
 130 SU-DSL (VDH)->PDP11/20 User 1/74/ANTS
 3 UCSB-MOD75 IBM 360/75 Server/OLS
 67 SCRL (VDH)->PDP11/45 User/ANTS
 4 UTAH-10 PDP-10 limited Server/TENEX
 132 UTAH-TIP TIP
 5 BBN-11X PDP-11 Peripheral processor for #69
 69 BBN-TENEX PDP-10 Server/TENEX
 133 BBN-TENEXB PDP-10 limited Server/TENEX
 6 MIT-MULTICS H-6180 Server till 12/17/73/Multics
 70 MIT-DMS PDP-10 Server/ITS
 134 MIT-AI PDP-10 Server/ITS
 198 MIT-ML PDP-10 Server/ITS
 7 RAND-RCC IBM 370/158 User
 8 SDC-LAB IBM 370/145 limited Server
 9 HARV-10 PDP-10 Server
 73 HARV-1 PDP-1 User
 137 HARV-11 PDP-11 User
 10 LL-67 IBM 360/67 limited Server
 74 LL-TX2 TX-2 Server
 138 LL-TSP TSP User
 11 SU-AI PDP-10 Server/SAIL
 12 ILL-CAC PDP-11/20 User/ANTS
 76 ILL-NTS PDP-11/50 User/ANTS
 140 UNIVAC UNIVAC 1616 1/15/74
 13 CASE-10 PDP-10 Server/TENEX
 14 CMU-10B PDP-10 Server
 78 CMU-10A PDP-10 Server
 15 I4-TENEX PDP-10 limited Server/TENEX
 79 I4-TENEX PDP-11 Peripheral processor for #15
 16 AMES-67 IBM 360/67 Server
 144 AMES-TIP TIP
 208 AMES-11 PDP-11/45 User 12/73
 145 MITRE-TIP TIP
 146 RADC-TIP TIP
 19 NBS-ICST PDP-11/45 User/ANTS
 147 NBS-TIP TIP

Numerical addresses vs. humans

● Solution: create an “address book” of host names and their addresses
● Maintained by Elizabeth Jocelyn "Jake" Feinler at the Network Information

Center (NIC) at SRI
● If you wanted a hostname, phone Jake Feinler, she’d enter it in database

● Originally human-readable

● Eventually a standardized format (“<NETINFO>HOSTS.TXT” aka “hosts.txt”)
● Machines could consume this directly
● Everyone periodically uses FTP to fetch HOSTS.TXT from the NIC

HOST : 10.0.0.1 : UCLA-CS,UCLA-CECS : VAX-11/750 : LOCUS : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.16 : AMES-TSS,AMES-67,AMES : IBM-360/67 : TSS/360 : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.22 : ISI-SPEECH11 : PDP-11/45 : EPOS : TCP/TFTP :
HOST : 10.0.0.23 : USC-ECLB,ECLB : DEC-1090B : TOPS20 : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.26 : PENTAGON-TAC : H-316 : TAC : TCP :
HOST : 10.0.0.27 : USC-ISID,ISID : DEC-2060T : TOPS20 : TCP/TELNET,TCP/SMTP,TCP/FTP,TCP/TFTP,TCP/FINGER :
HOST : 10.0.0.32 : PARC-MAXC,PARC : MAXC : TENEX : TCP/FTP,TCP/SMTP,TCP/TELNET :
HOST : 10.0.0.34 : LBL-NMM,NMM : VAX-11/780 : VMS : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.37, 128.10.0.1 : PURDUE,PURDUE-CS,PURDUE-TCP,PURDUE-PVAX,PVAX : VAX-11/780 : UNIX : TCP/FTP,TCP/TELNET,TCP/SMTP,ICMP,TCP/FINGER,TCP/ECHO :
HOST : 10.0.0.62 : UTEXAS-11 : PDP-11/70 : UNIX : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.68 : USGS1-MULTICS,RESTON,REST : H-60/68 : MULTICS : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.70 : USGS3-MULTICS,MENLO : H-6880 : MULTICS : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.73 : SRI-NIC,NIC : FOONLY-F3 : TENEX : TCP/TELNET,TCP/SMTP,TCP/TIME,TCP/FTP,NCP/FTP,NCP/TELNET :;Reclama
HOST : 10.0.0.78 : UCB-ARPA : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,TCP/SMTP,UDP :
HOST : 10.0.0.87 : SANDIA,SNL : DEC-2060T : TOPS20 : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.90 : LANL : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.0.0.91 : WASHINGTON,UDUB,UW-WARD : DEC-2060 : TOPS20 : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.1.0.1 : UCLA-CCN,CCN : IBM-370/3033 : OS/MVS : TCP/TELNET,TCP/FTP,TCP/SMTP,NCP/TELNET,NCP/FTP :;Reclama
HOST : 10.1.0.6 : MIT-DMS,DMS : DEC-1040 : ITS : TCP/TELNET,TCP/FTP,TCP/SMTP,TCP/FINGER :
HOST : 10.1.0.14 : CMU-CS-A,CMU-10A,CMUA : DEC-1080 : TOPS10 : TCP/TELNET,TCP/FTP,TCP/SMTP,TCP/FINGER,ICMP,NCP :;Reclama
HOST : 10.1.0.94, 192.5.2.3 : UWISC,CSNET-SH,CSNETB,CSNET,WISCONSIN : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.2.0.9 : YALE : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.2.0.58 : RUTGERS,RUTGERS-20,RUTGERS-10,RU-RED : DEC-2060T : TOPS20 : TCP/TELNET,TCP/FTP,TCP/SMTP,TCP/FINGER :
HOST : 10.2.0.78 : UCB-VAX,BERKELEY,UCB-C70 : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,TCP/SMTP,UDP :
HOST : 10.3.0.14 : CMU-CS-C,CMU-20C,CMUC : DEC-2060 : TOPS20 : TCP/TELNET,TCP/FTP,TCP/SMTP,TCP/FINGER,ICMP :
HOST : 10.3.0.24 : WHARTON-10,WHARTON : PLURIBUS : VDA : NCP/TELNET,NCP/FTP,TCP/FTP :
HOST : 10.3.0.96 : CORNELL : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,TCP/SMTP :
HOST : 10.5.0.53 : MARTIN,MMC : PDP-11/45 : RSX : TCP/TELNET,TCP/FTP :;Reclama
. . .

HOST : 46.0.0.4 : UCBARPA : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.5 : UCBCAD : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.6 : UCBERNIE : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.7 : UCBMONET : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.9 : UCBESVAX : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.10 : UCBVAX : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.11 : UCBKIM : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.12 : UCBCALDER : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.13 : UCBDALI : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.14 : UCBMATISSE : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.15 : UCBMEDEA : VAX-11/750 : UNIX : TCP/TELNET,TCP/FTP,UDP :
HOST : 46.0.0.19 : UCBINGRES : VAX-11/780 : UNIX : TCP/TELNET,TCP/FTP,UDP :

Berkeley also had its own network now!

You type:
$ telnet UCBVAX

• UCBVAX looked up in hosts file
• opens connection to 46.0.0.10
• much nicer than telnet 46.0.0.10!

Class A network! Like a /8 !
By 1986, these were all 128.32.0.x instead (Class B — Berkeley still has this /16)

Numerical addresses vs. humans

● Solution: create an “address book” of host names and their addresses
● Maintained by Elizabeth Jocelyn "Jake" Feinler at the Network Information

Center (NIC) at SRI
● If you wanted a hostname, phone Jake Feinler, she’d enter it in database

● Originally human-readable

● Eventually a standardized format (“<NETINFO>HOSTS.TXT” aka “hosts.txt”)
● Machines could consume this directly
● Everyone periodically uses FTP to fetch HOSTS.TXT from the NIC

● But this wasn’t ideal…

Numerical addresses vs. humans

● Increasing amount of work for Jake Feinler and her team!
● Increasing amount of data transfer!

● As networks grows (more hosts)
● file size increases
● number of hosts fetching it increases
● frequency with which you fetch to remain up to date increases
● .. absolute best case is that this is quadratic!

● .. were starting to be a lot more hosts (e.g., due to rise of workstations)
● Longer transfers more likely to fail; may end up with partial hosts file!

● In short:
● Centralized administration was burdensome and counter to “open” trend
● Centralized distribution of (increasingly) large file was bad news

The Domain Name System

● DNS developed to confront the problems being faced
● Developed by Paul Mockapetris; RFC in 1983
● He was given the task of pulling several proposals into a final one…

● .. just developed his own one instead!
● .. without much change, we still use it today

The Domain Name System: Goals

● Primary purpose: map from human-friendly names to IP addresses

● Deal with scale!
● Many hosts/names
● Many name/address lookups
● Many updates (can’t have bottleneck at NIC)

● Be highly available
● No single point of failure (what if the NIC’s FTP server was down?)

● Perform well
● Lots of communication starts with a name lookup!

● How do you solve these problems?
● Hierarchy!
● Three intertwined hierarchies!

● Names are hierarchical

The Domain Name System: Hierarchies

berkeleymtholyoke

events athleticswww eecswww

reporise

edu

athletics.mtholyoke.edu

eecs.berkeley.edu

repo.eecs.berkeley.edu

pink

ischool

● Authority is hierarchical

The Domain Name System: Hierarchies

berkeleymtholyoke

events athleticswww ischool eecswww

reporise

edu

Educause is responsible for .edu

UCB responsible for .berkeley.edu

pink

● Infrastructure is hierarchical
● Infrastructure is not just a single server that knows all the names
● It’s a hierarchy of name servers which know parts of the hierarchy

The Domain Name System: Hierarchies

adns1.berkeley.eduns.mtholyoke.edu

a.edu-servers.net

Name server that knows about name servers for all *.edu

Name server that knows stuff at/below eecs.berkeley.edu

Name server that knows
various stuff about and
“below” berkeley.edu

ns.eecs.berkeley.edu
adns1.berkeley doesn’t

know things that
ns.mtholyoke knows

DNS: Bigger Picture

com mil gov net org uk fr jp in … zwedu Top Level Domains
(TLDs)

● DNS root
● Controlled by ICANN

● Top Level Domains (TLDs)
● Controlled by Educause (.edu), Verisign (.net, .com), AFNIC (.fr), US

Government (.gov), etc., etc. (1,515 as of March 2020)

root

DNS: Bigger Picture

com mil gov net org uk fr jp in … zw

root

berkeleymtholyoke

events athleticswww eecs www

reporise

edu

give

ischool

Top Level Domains
(TLDs)

nth-level domains

Controlled by many,
many organizations!

DNS: Zones, Authority, Delegation

● A zone corresponds to an administrative authority responsible for contiguous
portion of hierarchy

● UCB controls *.berkeley.edu and *.ischool.berkeley.edu
● EECS controls *.eecs.berkeley.edu
● .. you have choice of whether/where to delegate authority of children
● .. means EECS doesn’t need to coordinate with

 main campus IT to name EECS machines berkeley

ischool eecswww

reporisepink
zone served from adns1.berkeley.edu

zone served from ns.eecs.berkeley.edu

DNS: Name lookup

● “Iterative” resolution process:
○ Start with root name server
○ Ask for the name you want
○ If it has an answer — you’re done!
○ If not, it will direct you to next name server to ask

1. Ask a.root-servers.net for repo.eecs.berkeley.edu
2. It won’t know, but it will tell you who to ask: a.edu-servers.net

3. Ask a.edu-servers.net for repo.eecs.berkeley.edu
4. It won’t know, but it will tell you who to ask: adns1.berkeley.edu

5. Ask adns1.berkeley.edu for repo.eecs.berkeley.edu
6. It won’t know, but it will tell you who to ask: ns.eecs.berkeley.edu

7. Ask ns.eecs.berkeley.edu for repo.eecs.berkeley.edu
8. It will tell you: 128.32.138.46 !

DNS: Name resolution

adns1.berkeley.edu

a.edu-servers.net

ns.eecs.berkeley.edu

a.root-servers.net

Example: Let’s look up (or resolve) repo.eecs.berkeley.edu

http://a.root-servers.net
http://repo.eecs.berkeley.edu
http://a.edu-servers.net
http://a.edu-servers.net
http://repo.eecs.berkeley.edu
http://adns1.berkeley.edu
http://adns1.berkeley.edu
http://repo.eecs.berkeley.edu
http://ns.eecs.berkeley.edu
http://ns.eecs.berkeley.edu
http://repo.eecs.berkeley.edu

DNS Sidenote: Classes of name servers

adns1.berkeley.edu

a.edu-servers.net

ns.eecs.berkeley.edu

a.root-servers.net

Root server
Knows about all the TLD servers

TLD server
Knows about a particular TLD (e.g., .edu)

Authoritative servers
Know about stuff in their zone
Actually do name to IP mapping!

Can be operated by an
organization itself (e.g., UCB), or
by a service provider

DNS: Name lookup

● “Iterative” resolution process:
○ Start with root name server
○ Ask for the name you want
○ If it has an answer — you’re done!
○ If not, it will direct you to next name server to ask

DNS: Name lookup

● “Iterative” resolution process:
○ Start with root name server
○ Ask for the name you want
○ If it has an answer — you’re done!
○ If not, it will direct you to next name server to ask

● Three important questions here:
● 1) Who actually does this multi-step lookup process?

DNS: Name lookup

● Who actually does this multi-step lookup process?

● Originally, likely that host did it directly

adns1.berkeley.edua.edu-servers.net ns.eecs.berkeley.edua.root-servers.net

DNS: Name lookup

● Who actually does this multi-step lookup process?

● Today, usually done by a resolving name server

adns1.berkeley.edua.edu-servers.net ns.eecs.berkeley.edua.root-servers.net

cdns01.comcast.net

“Recursive” query

“Non-recursive” / iterative
queries

● Who actually does this multi-step lookup process?

● Today, usually done by a resolving name server

DNS: Name lookup

adns1.berkeley.edua.edu-servers.net ns.eecs.berkeley.edua.root-servers.net

cdns01.comcast.net

These servers don’t support “recursive” queries — it’s harder and they’re busy!

● Who actually does this multi-step lookup process?

● Today, usually done by a resolving name server

DNS: Name lookup

adns1.berkeley.edua.edu-servers.net ns.eecs.berkeley.edua.root-servers.net

cdns01.comcast.net

“Recursive” query
Shouldn’t it be a
delegated query?

Don’t support “recursive” queries Support “recursive” queries

Iterative queries

“Recursive” query

DNS: Name lookup

● When a server gets a request for a normal/non-recursive query:
● If server knows the answer — return answer!
● If not — return reference to next server to query

● When a server gets a request for a recursive query:
● If server knows the answer — return answer!
● In theory, could perform recursive query on “next” server
● More likely this server does the “iterative” process itself
● Even more likely: return an error saying you don’t support “recursion”

● .. usually only specialized resolving servers support these queries
● Often provided by your ISP
● Generally aren’t authoritative for any domain (don’t have specific

name-to-IP mappings that they’re responsible for)

Truly recursive
Not really recursive?

DNS Sidenote: Classes of name servers

adns1.berkeley.edu

a.edu-servers.net

ns.eecs.berkeley.edu

a.root-servers.net

Root server
Knows about all the TLD servers

TLD server
Knows about a particular TLD (e.g., .edu)

Authoritative servers
Know about stuff in their zone
Actually do name to IP mapping!

cdns01.comcast.net

Resolving DNS servers
Just for delegating lookups
Not really part of the hierarchy

DNS: Name lookup

● “Iterative” resolution process:
○ Start with root name server
○ Ask for the name you want
○ If it has an answer — you’re done!
○ If not, it will direct you to next name server to ask

● Three important questions here:
● 1) Who actually does this multi-step lookup process?

● A host can do it, but probably delegates it to a resolving DNS server
● 2) How do I know the address of my resolving DNS server?

DNS: Name lookup

● How do you know the address of your resolving DNS server?

● Possibly: Configure it manually

● More likely: DHCP
Dynamic Host Configuration Protocol
(We’ll cover later)

● Note: You can have more than one!
Depending on OS/config, may cycle
through them, or switch to later one
if earlier one fails, or…

DNS: Name lookup

● “Iterative” resolution process:
○ Start with root name server
○ Ask for the name you want
○ If it has an answer — you’re done!
○ If not, it will direct you to next name server to ask

● Three important questions here:
● 1) Who actually does this multi-step lookup process?

● A host can do it, but probably delegates it to a resolving DNS server
● 2) How do I know the address of my resolving DNS server?

● Could be manual, but probably via DHCP (more later)
● 3) How does anyone know the address of the root DNS server?!

● First, must come clean about a fib…

DNS: Availability (Preview)

● I’ve been acting like there’s one root name server, like Berkeley had one
name server, and so on

● This is already somewhat resilient to failure…
● Berkeley’s name server could go down; would not affect UCLA

● But actually, every zone always has at least two name servers (replicas)
● The main Berkeley zone has at least:

adns1.berkeley.edu - 128.32.136.3
adns2.berkeley.edu - 128.32.136.14
adns3.berkeley.edu - 192.107.102.142

● .edu has 13 (“a” through “m” .edu-servers.net)
● root also has 13 (“a” through “m” .root-servers.net)

● .. actually, more. We’ll come back to this.

By IETF decree, more or less

DNS: Name lookup

● “Iterative” resolution process:
○ Start with root name server
○ Ask for the name you want
○ If it has an answer — you’re done!
○ If not, it will direct you to next name server to ask

● Three important questions here:
● 1) Who actually does this multi-step lookup process?

● A host can do it, but probably delegates it to a resolving DNS server
● 2) How do I know the address of my resolving DNS server?

● Could be manual, but probably via DHCP (more later)
● 3) How does anyone know the address of the root DNS server?!

â

DNS: Name lookup

● How do you know the address of a root name server?!

● You know it’s named a.root-servers.net or b.root-servers.net, etc., but…
● Where do you look that up to find the IP address?!
● Bit of a chicken and egg problem here

● Multiple ways, but a decent solution isn’t too complicated…
● Program that does name resolution ships with root server IP addresses

(possibly hard coded, possibly in default config file)
● Try query those pre-configured addresses until you find one that works
● Ask it for an up-to-date list

● Called a priming query
● Works as long as at least one of the pre-configured ones still works

DNS: Name lookup

● “Iterative” resolution process:
○ Start with root name server
○ Ask for the name you want
○ If it has an answer — you’re done!
○ If not, it will direct you to next name server to ask

● Three important questions here:
● 1) Who actually does this multi-step lookup process?

● A host can do it, but probably delegates it to a resolving DNS server
● 2) How do I know the address of my resolving DNS server?

● Could be manual, but probably via DHCP (more later)
● 3) How does anyone know the address of a root DNS server?!

● Preconfigured addresses; use those to get updated ones (priming)

DNS: Name lookup

● A final note on lookup…

● Remember that HOSTS.TXT file from the pre-DNS world?

● Legacy of it remains today on many systems…
● /etc/hosts on Unix-like systems (macOS, Linux, …)
● C:\Windows\System32\Drivers\etc\hosts on Windows

● .. but there’s usually not much in it!

DNS
Digging into the Details

DNS: Digging into the details

● APIs
● Servers
● Protocol
● How a domain is born

DNS: API, servers, and protocol

● The usual API functions:

● result = gethostbyname("example.com");
● Very old; deprecated for many years
● Wildly common in real code anyway
● Limited to IPv4

● error = getaddrinfo("example.com", NULL, NULL, &result);
● Modern
● Not limited to IPv4

● Available in C on Unix-like systems and Windows
● Available in Python socket module

● These usually just make a request to the configured resolving DNS server

DNS: API, servers, and protocol

● Gold standard DNS server: BIND
● First DNS server for Unix
● Written by four Berkeley grad students in 1983 (same year as DNS RFC)
● Berkeley Internet Name Domain Server

● .. why not Berkeley Internet Name Daemon?!

Sidenote: Daemons

● Many network server processes are called daemons
● The main program of BIND is called “named” (name daemon)
● SSH server is “sshd”

● Not strictly just network servers
● Sometimes referred to as “background” or “non-interactive” processes
● Sort of misleading — a name server is certainly interactive!
● .. but not generally run/used directly from command line
● Roughly: A daemon is a “server process”
● Generally long lived
● Generally communicated with via some sort of IPC or network
● Equivalent programs in Windows world usually called services

● Why “daemon”?
● Goes back at least as far as Descartes…

DNS: API, servers, and protocol

● Gold standard DNS server: BIND
● First DNS server for Unix
● Written by four Berkeley grad students in 1983 (same year as DNS RFC)
● Berkeley Internet Name Domain Server
● Perhaps it should not be surprising…

● .. berkeley.edu is the oldest .edu domain on the Internet!

http://berkeley.edu

DNS: Protocol

● Client/Server design
● Client is often a user host; could be another server (e.g., recursive query)
● Client sends query
● Server replies with response

● Server typically listens on well-known UDP port 53

● Why UDP?
● Saves RTT for TCP connection establishment
● TCP requires servers to keep state per connection… lots of connections
● No real need for ordered stream abstraction; a single packet is often fine

● But wait… UDP is not reliable! What if packets are dropped?
● Simple timeout/retry mechanism
● Varies from OS to OS, etc. (but can be fairly slow)

DNS: Protocol

● Some DNS servers also use TCP port 53

● Not usually used for normal queries
● Primarily used for “zone transfers” (replicating name database)

● This is much more data than a normal query!
● Three-way handshake likely negligible; reliability/ordering important

● We’ll talk about some more variants of the protocol later…

DNS: Protocol

● All messages share the same basic format

● Messages may be:
● Query (“QR” bit in header is 0)
● Response (“QR" bit in header is 1)

● Queries may theoretically be of several different types
● IQUERY obsoleted in 2002 (RFC 3425)

● "has not been generally implemented and has usually been operationally
disabled where it has been implemented.”

● STATUS never really defined
● Proposed standard in 2001 (DNS was 18 years old by this time)

● QUERY is used for basically everything

● “RD” bit in header is recursion desired — requests “recursive” lookup

See text for more details on
message format (or RFC 1035)

DNS: Protocol

● The actual data stored in the DNS is held in resource records (RRs)
● Essentially a tuple: (type, name, value, ttl, class)

DNS: Protocol

● The actual data stored in the DNS is held in resource records (RRs)
● Essentially a tuple: (type, name, value, ttl, class)

● Many types!

● Remembering primary goal of DNS (map human-friendly names to IP addrs)…
The two types we need for that are:

● A records (address)
● NS records (name server)

● We’ll talk about other types later…

DNS: Protocol

● The actual data stored in the DNS is held in resource records (RRs)
● Essentially a tuple: (type, name, value, ttl, class)

● Name associated with the record

● For A records, this is a hostname of interest, e.g., www.google.com

http://www.google.com

DNS: Protocol

● The actual data stored in the DNS is held in resource records (RRs)
● Essentially a tuple: (type, name, value, ttl, class)

● Value associated with the record

● For A records, this is the IPv4 address associated with name

DNS: Protocol

● The actual data stored in the DNS is held in resource records (RRs)
● Essentially a tuple: (type, name, value, ttl, class)

● How long (in seconds) the record is valid for

● May omit this going forward

● We’ll come back to it later

DNS: Protocol

● The actual data stored in the DNS is held in resource records (RRs)
● Essentially a tuple: (type, name, value, ttl, class)

● DNS can be used for network types besides the Internet
● class field specifies what network type

● Don't think this was ever used much (class=Internet almost always)

● We’ll ignore it

DNS: Protocol example

● Query root server requesting A record for ischool.berkeley.edu

● It sends back (NS, edu, k.edu-servers.net)
● Not what we asked for, but tells us our next step!

● Also sends (A, k.edu-servers.net, 192.52.178.30), …
● “Additional” record(s)
● It's probably what we would have asked for next!

k.edu-servers.neta.root-servers.net

, (NS, edu, l.edu-servers.net), …

http://ischool.berkeley.edu
http://www.apple.com
http://k.edu-servers.net
http://k.edu-servers.net
http://www.apple.com
http://l.edu-servers.net

DNS: Protocol example

● Query k.edu-servers.net requesting A record for ischool.berkeley.edu

● It sends back (NS, berkeley.edu, adns1.berkeley.edu), …

● Also sends (A, adns1.berkeley.edu, 128.32.136.3), …

k.edu-servers.neta.root-servers.net adns1.berkeley.edu

http://k.edu-servers.net
http://ischool.berkeley.edu
http://berkeley.edu
http://adns1.berkeley.edu
http://adns1.berkeley.edu

DNS: Protocol example

● Query adns1.berkeley.edu requesting A record for ischool.berkeley.edu

● It sends back (A, ischool.berkeley.edu, 128.32.78.26)

● That’s what we wanted!

k.edu-servers.neta.root-servers.net adns1.berkeley.edu

http://adns1.berkeley.edu
http://ischool.berkeley.edu
http://ischool.berkeley.edu

DNS: Protocol example

● Query adns1.berkeley.edu requesting A record for ischool.berkeley.edu

● It sends back (A, ischool.berkeley.edu, 128.32.78.26, 10800)

● That’s what we wanted!

k.edu-servers.neta.root-servers.net adns1.berkeley.edu

Can keep using this IP address for
10800 seconds (3 hours)

http://adns1.berkeley.edu
http://ischool.berkeley.edu
http://ischool.berkeley.edu

Moving on…

DNS: How is a domain name created?

● Example: you just created company Example Industries
● You get a block of IP addresses from your ISP
● e.g., 192.0.2.0/25

● Register example.com with registrar (e.g., GoDaddy)
● Probably less than $15/year

● Run two authoritative name servers for your domain (or have someone run them for you)
● Give your name server addresses to your registrar
● Registrar inserts pairs of records for them into TLD name servers, e.g.:

● (NS, example.com, ns1.example.com)
● (A, ns1.example.com, 192.0.2.6)

● Store resource records in your servers!
● e.g., type A record for www.example.com - (A, www.example.com, 192.0.2.1)
● Costs you basically nothing to create any subdomains you want

http://example.com
http://example.com
http://ns1.example.com
http://ns1.example.com
http://www.example.com
http://www.example.com

DNS: How is a domain name created?

● What if I want my own top level domain?
● I want to be murphy@awesome.cs168 !

● Talk to ICANN…
● Get your own for the low, low price of about $185,000?

● (If we all chip in, it’s only about $370 per person.)
● (Just saying.)

http://www.apple.com

Number of records at root over time

[Data from Allman 2019]

DNS: Beyond the Basics

More DNS: Multiple A records

● There might be more than one A record with the same name!

● Server returns multiple A records

● Shuffles the order

● Allows coarse-grained load balancing
● .. different users look up yahoo.com
● .. get different IP addresses
● .. contact different servers

● Allows simple resiliency
● .. if first one doesn’t work, try next

http://yahoo.com

More DNS: IPv6

● Everything we've looked at so far used IPv4 addresses

● Want IPv6?

● Ask for an AAAA record

[~]$ dig +short www.google.com A
172.217.0.36

[~]$ dig +short www.google.com AAAA
2607:f8b0:4005:808::2004

More DNS: Reverse lookups

● What if I have an address, e.g., 138.110.1.200 ?
● What’s its hostname?

● PTR record
● Value is an associated hostname
● Name is:

● Dot-quad IP address listed backwards
● 138.110.1.200 → 200.1.110.138

● Followed by .in-addr.arpa

[~]$ dig +short 200.1.110.138.in-addr.arpa PTR
ns.mtholyoke.edu.

Similar mechanism for IPv6 using
ip6.arpa

[~]$ dig www.berkeley.edu | clean | head -1 [~]$ dig www.berkeley.edu | clean | head -1
www.berkeley.edu. 185 IN CNAME www-production-1113102805.us-west-2.elb.amazonaws.com.

More DNS: Name aliasing

● CNAME record
● “Canonical name”
● Allows you to define an alias for another name

● www.berkeley.edu name translates to an amazonws.com name
● (Because Berkeley’s main website is hosted by Amazon)

● Next step would be to look up the A record for the amazonws.com name
● (Actually, server included it — the “head -1” hid it)

● Similar DNAME record maps a whole subtree:
● WHATEVER.foo.com → WHATEVER.bar.com

http://www.berkeley.edu
http://amazonws.com
http://amazonws.com
http://WHATEVER.foo.com
http://WHATEVER.bar.com

More DNS: Email

● Send an email to murphy@berkeley.edu and I get it… at google.com?

● How? Why?
● berkeley.edu is hosted by Amazon, not Google!

● Even in past, mail server was often separate machine, e.g., mail.berkeley.edu
● Nobody wants to address messages to murphy@mail.berkeley.edu!

● Email servers look up MX record (mail exchanger) of recipient domain
● This tells the mail server(s) to use for mail to that domain

[~]$ dig berkeley.edu MX | clean
berkeley.edu. 219 IN MX 1 aspmx.l.google.com.
berkeley.edu. 219 IN MX 5 alt2.aspmx.l.google.com.
berkeley.edu. 219 IN MX 5 alt1.aspmx.l.google.com.
berkeley.edu. 219 IN MX 10 alt3.aspmx.l.google.com.
berkeley.edu. 219 IN MX 10 alt4.aspmx.l.google.com.

mailto:murphy@berkeley.edu
http://google.com
http://berkeley.edu
http://mail.foo.com
mailto:murphy@mail.foo.com

More DNS: TXT records

● TXT records were originally meant for human-readable information

● These days, often used for things like site verification

[~]$ dig +short berkeley.edu TXT | grep veri
"adobe-idp-site-verification=a113c870-3c49-4b4a-b3a4-31e1cf1860cb"
"ZOOM_verify_RirbP7N1QWC3Zzm02oL4Cw"
"google-site-verification=fL93jj-VPnl_5wdFDh26YshzKVPraWAurHaBCu-k-Xw"
"google-site-verification=loQrJWyMsMB249uINb-AsRGTWVoLdTc44Td3aMGn-NE"

● Adobe, Zoom, Google, Facebook, etc. give you a magic value
● You put it in TXT record on your domain — proves you have control over domain
● Unlocks capabilities on other site

● Google will show how often your site shows up in results
● Facebook lets you edit how shared links to your site appear

● MX was this special-purpose redirection for email
● What about other services?

● Do they all need their own special record types?
● Seems silly
● SRV record solves similar problem for arbitrary services

● Record named _serviceName._transportProtocol.my.hostname.here
● Record value contains:

● “target” hostname to use instead
● Port number to use
● (Some other junk)

● Easy to add more services — just create more SRV records

See Minecraft case study video
if you want to see how this is used

in a real-world scenario.

More DNS: SRV records

More DNS: Simple Indirection

● Remember, in an ideal world, your IP address is topologically meaningful!
● e.g., it’s a sub-allocation of your provider’s address range

● What if you have a popular website, www.example.com...
● The server is at 203.0.113.4…
● And you switch providers…
● And new provider gives you 198.51.100.88 ?

● .. just update www.example.com's A record to 198.51.100.88
● .. few people likely to notice

http://www.example.com
http://www.example.com

More DNS: Intelligent indirection

● You stream video from
three servers across the
United States

● Three different IP
addresses

● Smart DNS server looks
at IP address of client…

● Does GeoIP lookup…
● Selects closest server!

● Saves money/latency

More DNS: Summary

● We’ve looked at a lot of things DNS can do!

● Coarse server load spreading and resiliency (via multiple A records)
● Name-to-IPv6-Address mapping (via AAAA records)
● IP-Address-to-Name (reverse) mapping (via PTR records)
● Alias names (via CNAME record)
● Nice email addresses (via MX records)
● Site verification (via TXT records)
● General name-to-service mapping (via SRV records)

● DNS as an indirection layer

● .. and there are many more record types and DNS tricks!

Attributions

Minecraft PNG, Creative Commons 4.0 BY-NC
http://pngimg.com/download/59250

Blank US map borders.svg, Public Domain

https://commons.wikimedia.org/wiki/File:Blank_US_map_borders.svg

http://pngimg.com/download/59250
https://commons.wikimedia.org/wiki/File:Blank_US_map_borders.svg

