CS168

Lecture 19



Today in Networking

e 22nd anniversary of Mozilla’s official launch (1998)

e The first web browser to really take off was Mosaic
e Developed at National Center for Supercomputing Applications (NCSA) at
the University of lllinois at Urbana—Champaign
e Funding from “Gore Bill”
e One of its developers (Marc Andreessen) went on to found Netscape
e |Internally, Netscape’'s browser (Netscape Navigator) was called "Mozilla”
e This browser fotally dominated the web for a crucial period

In 1998, Mozilla the organization released the browser code under an open license
.. this eventually evolved into Firefox

e .. and all the other things the Mozilla Foundation does for the Internet!



The Web



Where are we?

e Before the break, | said we were starting to look at user-facing things

e Started with DNS, which (at least initially) provided a user-facing system for
interacting with the network: names instead of addresses

e J[oday:

e The web — a game changing user-facing killer app



The Web

e Abbreviated history and motivation

e [he basics
e HIML, clients, servers, URLs
e BasicHIITP

e Availablility, scalability, and performance
e (Caching
e C(Content Delivery Networks
o [CPandHTTP

e Back to basics
o Statelessness



The Web: Abbr. Hist.



The Web: Very abbreviated history

e [n 1989, Tim Berners-Lee (then a software engineer at CERN) saw a problem
e Lots of information

e |[nformation being added to and changed all the time
e People come and go

e [nformation gets lost
e |It's often recorded — somewhere!

e CERN had a documentation system — CERNDOC
e Hierarchical
e Frustrating — information is not always hierarchical!

e Pitched a solution — “Information Management: A Proposal’



The Web: Very abbreviated history

e [n 1989, Tim Berners-Lee (then a software engineer at CERN) saw a problem
e Lots of information

e Information being added to and changed all The actual observed working

structure of the organisation is a
¢ People come and go multiply connected "web" whose

Interconnections evolve with time.

e Information gets lost — From "Information Management: A
e |t's often recorded — somewhere! Proposal”

e CERN had a documentation system — CERNDOC
e Hierarchical
e Frustrating — information is not always hierarchical!

e Pitched a solution — “Information Management: A Proposal’



The Web: Very abbreviated history

e The method of storage must not place its own restraints on the information
e .. a"web" of notes with links ... is far more useful than a fixed hierarchical system.
e Remote access across networks
e CERN is distributed, and access from remote machines is essential.
e Heterogeneity
e Access is required to the same data from different types of system
e Non-Centralisation
e [nformation systems start small and grow. They also start isolated and then
merge. A new system must allow existing systems to be linked together without
requiring any central control or coordination.
e Access to existing data
e |f we provide access to existing databases as though they were in hypertext form,
the system will get off the ground quicker.

From “Information Management: A Proposal”, Tim Berners-Lee, CERN, 1989, 1990



The Web: \ '~= - f\.l,\l,\.,,“ it aAA At

Chent"bramwser” program
runs on many platforme

e The method ¢ | nation
e .. a'"web" S ' rarchical system.
e Remote acce

e CERNis ial.
e Heterogeneit
e Access s 1
e Non-Centralis
e |nformatic 1 and then
merge. A gether without

requiring

e Access to exi
e [fwe prov
the systel

Server iy

Information on
one server reefers to
information on another

1 hypertext form,

10 From “Information Management: A Proposal”, Tim Berners-Lee, CERN, 1989, 1990



The Web: \

Generic browser

lerarchical system.

e The method of
e ..a"web"o
e Remote access
* CERNisdi Hy p ertext F"g%%p*?"?:%%eéb ntial.
e Heterogeneity sopver odk lke hypertext to the brows

e ACCeSS IS r¢ em
e Non-Centralisa Ll
e Information | ed and then
merge. A ne - T together without
requiringar., I EmE——

e Access to existing data
e |f we provide access to existing databases as though they were in hypertext form,
the system will get off the ground quicker.

11 From “Information Management: A Proposal”, Tim Berners-Lee, CERN, 1989, 1990



12

The Web: Why was it so successful?

e |t wasn't trying to force anything

Didn’'t need to structure data in a particular way

Didn’t need to store data in a particular format

Didn't need to use a particular computer/database system
Didn’'t need to abandon existing (working) systems

Every good work of software

e Had networks in mind from the beginning! starts by scratching a
developer's personal itch.

e Provided integrated interface to scattered information — Eric Raymond
e \Vas designed to be a practical solution to a specific problem
e They didn't try to charge for the technology

e .. not all of this was new, but this was where they first all came together



13

The Web: Why was it so successful?

e \What made it successful in the beginning is what makes it successful now!
e |t gives a lot of leeway for how websites work (didn’'t over-specify)
e Not tied to any one underlying system
e No central authority — you can just add your own server/content

e The abllity to quickly navigate information from different sources



14

The Web: Why study it?

e [he early web was mind-numbingly simple technically
e And was not cutting edge intellectually in terms of information representation
e But it was/is a successful and practical system that changed the world!

e No professor could design something so simple
e Enough functionality to be effective
e Not enough to prove her cleverness

— Professor Scott Shenker

e \We couldn't possibly have a class about the Internet that didn't look at it!



The Web: Basics



16

The Web: Basic requirements

e Something to represent content with links: HTML

e C(lient program to access/navigate/display content (e.g. HTML): Web browser

e A way to reference content: URLs
e |t's how you link/embed content to/in other content across a network
e First general "*handle” for arbitrary Internet content
e Not just naming a host/processes (address/port)

e Something to host content: Web servers

e A protocol to get content from server to client: HTTP
e Turns web URLs into TCP connections



17

Web basics

e HTML: HyperText Markup Language - Represent content with links

e Browser: Access/navigate/display content

e Provide integrated interface to scattered information

Embed another resource LINK to another resource

X~ [ T~

<html>
<head>
<title>A wek page!</title>
</head>

<body>
<p>Finally, a way\ to share
<a href="
</p>

">memes</a>!

<1lmg src=*“
</body>
</html>

® A web page! X +

¢ -2 C (O NotSecure | test.cs168.io/intro.htm!

Finally, a way to share memes!

ww
.

: ol H
COMPUTER SCIENCE~-




Web basics: URL Syntax

scheme : //host|[ : port] /path /resource

scheme Typically a protocol: http, ftp, https, smtp, rtsp, efc.
host DNS hostname or IP address
port Defaults to protocol’s standard port
e.g. http: 80 https: 443
path Traditionally reflecting file system
resource ldentifies the desired resource (traditionally a file)

Can also extend to program executiens:

http://us.f413.mail.yahoo.com/ym/ShowLetter?
box=%40B%40Bulk&MsgId=2604 1744106 29699 1123 1261 0 28917 3552 128995
7100&Search=&Nhead=f&YY=31454&order=down&sort=date&pos=0&view=a&head=Db

18



Web basics: URL Syntax

scheme : //host[ : port] /path /resource[?query][#fragment]

scheme Typically a protocol: http, ftp, https, smtp, rtsp, efc.
host DNS hostname or |IP address
port Defaults to protocol’s standard port

e.g. http: 80 https: 443
path Traditionally reflecting file system
resource ldentifies the desired resource (traditionally a file)
query e.g., search terms if resource is search program

fragment Sub-part of resource (e.g., paragraph on web page)

19



Questions?



21

Flashiback: Do we name the right things”?

e URLs basically are hostname plus filename

e |sitideal?
e \What if you move the file to another machine?
e \What if you want to replicate the file on many hosts so it's always available? Do
you even care which host it's stored at?

e Should we be naming the content directly, rather than server+filename?
e See: Information-Centric Networking, Content-Centric Networking, and Named
Data Networking

e |s the web more about accessing services? (your banking, Facebook, ...)
e Modern services certainly aren't tied to a specific host!
e And a lot is dynamic — you’re not fetching a file, you’re running a program
e Should we be naming services directly?



22

Web basics: putting it all together

HTML represents content with links/embeddings
Web servers host the content

URLs specify location of content

HTTP gets content from servers based on URL
Client (browser) displays/navigates content

cs168 server

W~
=

.html

Some other server

“IIIIIIIIIOIIIIIIIEI

.png



http://test.cs168.io/intro.html

Questions?



24

The Web: Basic requirements

e Something to represent content with links: HTML

e C(lient program to access/navigate/display content (e.g. HTML): Web browser

e A way to reference content: URLs
e |t's how you link/embed content to/in other content across a network
e First general "*handle” for arbitrary Internet content
e Not just naming a host/processes (address/port)

e Something to host content: Web servers

e A protocol to get content from server to client: HTTP
e Turns web URLs into TCP connections



BasicHI TP



26

HyperText Transfer Protocol (HTTP)

e Focusing our discussion on common/current versions of HT TP:
e HITTP 1.0 (1996) and HTTP 1.1 (1997)
e These are (significant) outgrowth of original "HTTP 0.9”

e HITP 2 published in 2015
e |argely based on work by Google
e As of 2020, 44% of websites use it
e Significant departure; largely performance optimizations

e HTTP 3 forthcoming standard
e Largely based on work by Google
e As of 2020, 5% of websites use it (more or less Google and Facebook?)
e Significant departure; largely performance optimizations

https://w3techs.com/technologies/details/ce-http2



https://w3techs.com/technologies/details/ce-http2

27

HyperText Transfer Protocol (HTTP)

e [he basics of HTTP:

e C(Client-server architecture
Client connects to server on well-known TCP port 80
Client issues request

Server issues reply

e Protocol is “stateless”

You should basically
understand what this
, IS saying.

(We'll go into details, though.)

- We'll come back to this.




Inside an HTTP exchange

o (Simple HTTP 1.0 "GET" request)

Client creates TCP connection (port 80)
e C(Client sends request

Server sends response packets
Client ACKs them

e Note: There may be unshown ACKs

e Server closes connection

Client

Establish <
connection

(

Client

\

Tcp Syn
TCP syn + ack

Server

>

~ Response

Close
connection



29

Inside an HTTP 1.0/1.1 request

“Plain text” ("Latin 1" encoding)
e Lines separated with CR LF

Request for
http://www.someschool.edu/main/about.html



http://www.someschool.edu/main/about.html

30

Sidenote: CR and LF

Carriage

e In common text encodings (ASCII, Latin 1, UTF-8)...

e You're probably familiar with \n” — newline

Common English letters and punctuation are encoded as a single byte...
e 65is A", 97 is"a’, 35is "#’, efc.
0 through 31 are control characters
e 8 Is backspace
e 4 s “end of transmission”

e 10 is line feed (LF)
e 13 is carriage return (CR)

On Unix-like systems, this is really LF — does both

On Windows, means CR LF

Open a file in text mode in Python (and other languages), and it does translation

If you ever open up a file and every line ends with “*M” — those are the carriage returns —
this was a Windows file and you're on a Unix-like machine



31

Inside an HTTP 1.0/1.1 request

e "Plain text” ("Latin 1" encoding)
e Lines separated with CR LF

e Request line:
e NMethod - “action” to perform. GET/HEAD/POST/...

e Resource - e.g., which thing to fetch
e [Protocol version - either 1.0 or 1.1

e Request headers:
e Provide additional information or modify request

e Some required; many optional
e Blankline

e Body:
e Optional data
e Used when submitting data (e.g., a form via POST)

Request for
http://www.someschool.edu/main/about.html

GET /main/about.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: en

(blank line)

(body, if there is one)


http://www.someschool.edu/main/about.html

32

Inside an HTTP 1.0/1.1 reques

.I.

e "Plain text” ("Latin 1" encoding)
e Lines separated with CR LF

e Request line:
e [Method - “action” to perform. GET/HEAD/POST/...

e Resource - e.g., which thing to fetch
e Protocol version - either 1.0 or 1.1

e Request headers:
e Provide additional information or modify request

e Some required; many optional
e Blankline

e Body:
e Optional data
e Used when submitting data (e.g., a form via POS

Request for
http://www.someschool.edu/main/about.html

GET /main/about.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: en

(blank line)

(body, if there is one)

http://www.someschool.edu/main/about.htmi

AN J
Y Y

Where to connect Request Line
(and Host: header)



http://www.someschool.edu/main/about.html

33

Inside an HTTP 1.0/1.1 response

e Status line:
e Protocol version - either 1.0 or 1.1 Request for
e Status code - 2xx=success, 4xx=error, ... http://www.someschool.edu/main/about.html
e Reason - Human-readable

HTTP/1.1 200 OK

P Response headers: Connection: close
P r ddit | inf f Date: Thu, 06 Aug 2006 12:00:15 GMT
¢ roviade a iuonal Information Server: ApaChe/l .3.0 (Uan)

Last-Modified: Mon, 22 Jun 2006
Content-Length: 6821
Content-Type: text/html

(blank line)

e Body: <html>

. <head>
. |
Optional data — but very common! <title>About Some School</title>

e e.g., it's the content of about.html! </head>

e Blank line


http://www.someschool.edu/main/about.html

Questions?



35

HTTP Methods (Common)

o GET
e [he classic!
e Request to download some object
e No body on request, body of reply is the requested object

o POST
e Send data from client to server
e e€.g., submitting a web form, adding item to shopping cart, etc.
e Body on request and often on response too

e HEAD
e Basically same as a GET except you don’t want the body (just headers)
e Used to, e.g., see if something exists, when it was modified, etc.



36

HTTP Response status codes (selected)

e 1xx - Informational
e None defined in HTTP 1.0, only a couple in HTTP 1.1

® 2XxX - Successful
.. o 200: OK (e.g., here's the web page you requested...)

e 3xX - Redirection
e 301: Moved Permanently (Location header tells you new URL)
.. o 304: Not Modified (not really a redirection; we'll revisit this one)

e 4xx - Client Error
e 400: Bad Request (catchall for when client messes up, e.g., didn’t include a required header)
e 401: Unauthorized (the resource requires a password or something)
.. o 404: Not Found (the bane of the early 2000s web, though funny/creative ones helped)

e OxX - Server Error
e 500: Internal Server Error (catchall for when server configuration goes wrong)



37

HyperText Transfer Protocol (HTTP)

e [he basics of HTTP:

e C(Client-server architecture
Client connects to server on well-known TCP port 80
Client issues request

Server issues reply

e Protocol is “stateless”

- We'll come back to this.




Questions?



39

Where do we go from here”?

e \\Ne've described the basics...

e .. what else do you want?!
Do these goals sound really familiar?

e Users .. they’re basically the same as DNS!
e Fast (Performant) Solve them using same ideas:
® Highly available! replication and caching!
e .. nobody likes a slow or broken site! Plus: Make up for some TCP issues...

e (Content provider
e Fast and highly available (make users happy!)
e Scalable (stay fast and highly available even with lots of users/content)



Al TP

Availability, scalability, and performance



41

HTTP: Availability, scalability, and performance

e Like with DNS, these topics are somewhat intertwined!
e \We'll discuss three things here:

e (Caching

e C(Content Delivery Networks (CDNSs)

e |[nterplay of HTTP and TCP



Web Caching



43

HTTP caching: Why does caching work?

e Why does caching work?
e EXxploits locality of reference AKA principle of locality

e Spatial locality — If something is accessed, something near it will also
probablv be accessed

e Temporal locality — If something is accessed, it'll probably be
accessed again soon

e Both were a factor if you took CS61C
e One is much more relevant to web caching



44

HTTP caching: How well does caching work”?

e How well does CaChing work? Everyone downloads the same viral memes...
Very well up to 3 point. . .. but everyone has their own weird interests.
e .. file popularity has high peak but long talil
e |arge overlap in highly popular content
e But many unique requests
e ..common to many types of cache

e Inthe real world...
e C(Content is increasingly dynamic (personalized feeds, many updates)

e But there’'s still a lot of static content worth caching
e |mages, CSS stylesheets, JavaScript libraries, ...



45

HTTP caching: How does caching work?

e How does caching work in HTTP?
e The key isin the headers...

e Response headers:

@ Cache-Control
® Expilres



46

HTTP caching: The Cache-Control header

e Cache-Control header used for lots of cache-related things
e Used for both requests and responses

e Most important use is for server (response) to specify max-age

e |tsjusta ITL in seconds — how long response can be cached

@ Cache-Control: max-age=<seconds>



47

HTTP caching: the Expires header

e Cache-Control is only available in HTTP 1.1

e HTTP 1.0 uses Expires response header

e |t'sjusta TTL in absolute time — when cached response becomes invalid

e Expires: Thu, 31 Dec 2037 23:55:55 GMT

e Servers often send both Cache-Control: max-age and Expires



48

HTTP caching: How does caching work?

e How does caching work in HTTP?
e The key isin the headers...

e Response headers providing TTLs
e Cache-Control: max-age (HTTP 1.1)
e Expires (HTTP 1.0)

But TTLs aren't always good enough!

e .. server doesn't necessarily really know when content will be updated
.. clients need a way to force skipping of caches!
e Cache-Control: no-cache and Pragma: no-cache request headers



49

HTTP caching: How does caching work?

Client Cache

N

v1.0

max-age=60 max-age=60

Client requests document; cached for one minute at t=0

Origin Server

)

=
v1.0




50

HTTP caching: How does caching work?

Client Cache Origin Server
HTTTTTTTO NS
) )
=N =
v1.0 v1.0

Client requests document; cached for one minute at t=0
Document updated on server at t=1 — refresh would be stale until t=60!



51

HTTP caching: How does caching work?

Client Cache Origin Server

A
=

v2.0

no-cache no-cache

max-age=60 max-age=60

Client requests document; cached for one minute at t=0
Document updated on server at t=1 — refresh would be stale until t=60!
User does “hard refresh” at t=10 (shift-click refresh in browser)

What if document hadn’t been updated? We just transferred it again for nothing!
v1.0 was already in the caches!



52

HTTP caching: How does caching work?

e Request header If-Modified-Since: <date>

e |[f resource has changed since <date>:
e Respond with latest version

e |f resource has not changed:
e Respond with 304 - Not Modified

e Includes headers
e But not the body

e .. lets you know you're up-to-date, but doesn't waste bandwidth



53

HTTP caching: Typical caching interaction

e C(Client issues request for resource

e |f resource Iin browser cache:
e If cached version not expired (TTL > 0)
e Assumed to be current — use version in browser cache
e Else, cached version is expired
e Send request using If-Modified-Since: <date of cached version>
e |f server’s version IS hewer:
e Respond with new version (200 response)
e |f server’s version has same date:
e Respond with Not Modified (304 response)
e Else, resource not in browser cache
e Send request to server (with no If-Modified-Since)



54

HTTP caching: Typical caching interaction

e C(Client issues request for resource

e |f resource Iin browser cache:
e If cached version not expired (TTL > 0)
e Assumed to be current — use version in browser cache
e Else, cached version is expired
e Send request using If-Modified-Since: <date of cached version>
e |f server’s version IS hewer:
e Respond with new version (200 response)
e |f server’s version has same date:
e Respond with Not Modified (304 response)
e Else, resource not in browser cache
e Send request to server (with no If-Modif

What if server’s version is older?



55

HTTP caching: Typical caching interaction

o Clientissues request for reso This example just looked at browser cache.

e |f resource in browser cache: When browser actually makes requests, they may pass

| | - T
e If cached version not expi through other caches that use a similar algorithm!

e Assumed to be current — use veisiuil 11 DIVWSEI tdulie
e Else, cached version is expired
e Send requestusing If-Modified-Since: <date of cached version>
e |f server’s version IS hewer:
e Respond with new version (200 response)
e |f server’s version has same date:
e Respond with Not Modified (304 response)
e FElse, resource not in browser cache
e Send request to server (with no If-Modified-Since)



Questions?



57

HTTP caching: Two-client example

Clients Shared Cache

Result?

Clients are downloading a document.
Clients have local (browser) caches.
Clients also share cache in network.
Document TTL is 5 (minutes).

Doc TTL
IS 5

Origin Server

HTTHTITO TS

v1.0




58

Doc TTL
HTTP caching: Two-client example s 5

Clients Shared Cache Origin Server

:’;‘ TINNINNE

V1 .0

When? What? Result?

s
' I

D

v1.0

T=0 A requests Fetched from Origin Server



59

HTTP caching: Two-client example

Doc TTL
IS 5

Cllents

vi 0
When? What?
T=0 A requests

T=1 B requests

Shared Cache

v1.0

Result?
Fetched from Origin Server
Fetched from Shared Cache

Origin Server

O =S

r‘I
[

v1.0




Doc TTL

HTTP caching: Two-client example s 5
Clients Shared Cache Origin Server
3
= HTTHTITO TS
v1.0 )
A =
v1.0
When? What? Result?
T=0 A requests Fetched from Origin Server
T=1 B requests Fetched from Shared Cache

T=2 Doc modified on server! —

60



Doc TTL
HTTP caching: Two-client example s 5

Clients Shared Cache Origin Server

A
= LHHITHTTTO IS
v1.0
A
- v1.0 v2.0
v1.0

isat
’ I

When? What? Result?

T=0 A requests Fetched from Origin Server
T=1 B requests Fetched from Shared Cache
T=2 Doc modified on server! —

T=4 B requests Fetched from Browser Cache



Doc TTL

HTTP caching: Two-client example s 5
Clients Shared Cache Origin Server
)
1 < HHHTHTO IS
v2.0
—
) v2.0
v1.0
When? What? Result?
T=0 A requests Fetched from Origin Server
T=1 B requests Fetched from Shared Cache
T=2 Doc modified on server! —
T=4 B requests Fetched from Browser Cache
Client A sends If-Modified-Since (to Shared Cache)
T=6 A requests Shared Cache sends If-Modified-Since (to Origin Server)

v2.0 fetched from Origin Server



Doc TTL

HTTP caching: Two-client example s 5
Clients Shared Cache Origin Server
HTTTTTTO NS
)
v2.0 v2.0
When? What? Result?
T=0 A requests Fetched from Origin Server
T=1 B requests Fetched from Shared Cache
T=2 Doc modified on server! —
T=4 B requests Fetched from Browser Cache
Client A sends If-Modified-Since (to Shared Cache)
T=6 A requests Shared Cache sends If-Modified-Since (to Origin Server)

v2.0 fetched from Origin Server

Client B sends If-Modified-Since (to Shared Cache)

T=7 B requests v2.0 fetched from Shared Cache



Questions?



65

HTTP caching: Summary of important cache headers

e Response headers providing TTLs:
® Cache-Control: max-age and Expires

e Request headers allowing overriding of TTLs:
@ Cache-Control: no-cache and Pragma: no-cache
e (Can be triggered by “shift-refresh”

e Allow requests that skip body if cache is up to date:
e Request header If-Modified-Since: <date>

e Remember: you can have multiple caches along paths!



Questions?



6/

HTTP caching: Final word on Cache-Control header

e A couple other important uses of Cache-Control in response...

@ Cache-Control: no-store
e Don't cache this!

e Always request from origin server
e e.g., forthings like banking data

® (Cache-Control: private
e (Content only meant for one user

e Okay to store in private (browser) cache
e .. butdon'tstore it in shared proxy server cache!



68

HTTP caching: Where?

We've discussed how caching works...
e .. but where are the caches?

e [he client!

e Proxy servers



69

Proxy Servers

e Proxy server. A server that makes requests on behalf of a client

e The caches we saw In previous examples fit that definition
e .. caching is a major feature of web proxy servers

e Also often used to enforce policy
e .. company blocks all traffic except through proxy
e .. proxy has whitelist/blacklist

e Also often used to do load balancing
e ..request arrives at proxy

e .. Itredirects it to one of several equivalent servers

e Note: our focus is the web, but other protocols have proxy servers too



HTTP caching: Where?

No caching SearchCorp
e Many clients transfer same information TMIMENE

e (Generates unnecessary server load
e (Generates unnecessary network load
e C(lients experience unnecessary latency

Comcast

70 Hudson University Empire State University



HTTP caching: Where?

SearchCorp

Reverse Proxies

e (Cache documents close to servers
e Reduces server load

e [ypically done by content provider

—

—

_]- _]- Comcast !

71 Hudson University Empire State University

L




HTTP caching: Where?

Forward Proxies SearchCorp

e (Cache documents close to clients

e Reduces network traffic

e Reduces server load G
e T[ypically done by ISPs or enterprises

(@

—_—
— =1
[

72 Hudson University Empire State University

Comcast

|
i ({6



HTTP caching: Where?

We've discussed how caching works...
e .. but where are the caches?

e [he client!

e Proxy servers
e [Forward proxies (near client)
e Reverse proxies (near server)

e Content Delivery Networks (CDNSs)
e [hisis its own subtopic!
e Any questions before we move on to it?

73



Content Delivery Networks



75

CDNs

e Replication is a huge benefit to availability, scalability, and performance
e \We saw this with DNS!
e (Can spread the load
e Places content closer to clients (less latency)

e (Caching is a form of opportunistic replication
e .. but what if a given organization doesn't have a forward proxy?
e .. what if content provider and wants its content always replicated?

e |dea: Caching and replication as a service — "CDNs 1.0”



76

CDNs “1.0"

e |arge-scale distributed storage infrastructure
e (Usually) administered by one entity
e e.g., Akamail has 275,000+ servers in 136 countries

e How does content provider get its data onto Akamai’s servers?
e [wo major ways

o Pull

e Push

o . we'llcome back to these in a moment

e Both typically used with DNS trick mentioned in previous lecture



CDNs “1.0™: The basic idead

e Content provider buys service from a CDN, e.g., Akamali

e CDN creates new domain names for the customer content provider
e e.g.,e12596.dsc|.akamaiedge.net for cnn.com

e [he CDN’'s DNS servers are authoritative for the new domains

e Content provider modifies its content so that embedded URLs reference the new domains
e “"Akamaize” content
® e.g.: http://www.cnn.com/some-photo.jpg becomes http://e12596.dscj.akamaiedge.net/some-photo.jpg

e Initial request goes to CNN (e.g., for main http://www.cnn.com page)
e .. but embedded links go to Akamai, which handles DNS resolution for URL
e .. Akamai DNS servers pick one of their 275,000+ servers to serve it
(based on |IP geolocation, server load, etc. — see Lecture 17 - Intelligent indirection)

(&4


http://e12596.dscj.akamaiedge.net
http://cnn.com
http://www.cnn.com/some-photo.jpg
http://e12596.dscj.akamaiedge.net/some-photo.jpg
http://www.cnn.com

/8

CDNs “1.0™: The basic idead

e Content provider buys service from a CDN, e.g., Akamai

e CDN creates new domain names for the customer content provider
e e.g.,¢el”
DNS Pop Quiz
e The CDlI Q: What if CNN doesn’t want to embed a weird Akamai
domain name in its pages?

e Content pro 2 new domains
e "Akamal  A: Add a CNAME record to CNN nameserver |
* eg:httoy  (CNAME, cdn.cnn.com, e12596.dscj.akamaiedge.net) t/some-photo.jpg

e |nitialrequest g o i oy T
e .. but embedded links go to Akama| WhICh handles DNS resolution for URL
e .. Akamai DNS servers pick one of their 275,000+ servers to serve it
(based on |IP geolocation, server load, etc. — see Lecture 17 - Intelligent indirection)



http://e12596.dscj.akamaiedge.net
http://cnn.com
http://www.cnn.com/some-photo.jpg
http://e12596.dscj.akamaiedge.net/some-photo.jpg
http://www.cnn.com
http://cdn.cnn.com
http://e12596.dscj.akamaiedge.net

79

CDNs “1.0™: The basic idead

e How does content provider get data onto CDN'’s servers?

o PFull
e Akamai servers act like a cache
e Content provider gives CDN “origin” URL
e \When a client requests from Akamai
e .. Iif cached, serve it
e .. if not cached, request (“pull”) from origin, cache it, serve it

e [Fush
e Akamai servers just act like normal servers
e C(Content provider uploads content to CDN (“pushes” their content)
e \When a client requests from Akamai, just serve like any web server

e \arious tradeoffs
e Short version: pull is less work for content provider but push gives more control



CDNs “1.0™: The basic idead

bull CDNs SearchCorp
e CDN places caches in many networks

e Uses DNS to direct requests to them
e Only for content from CDN customers

E E Comcast

80 Hudson University Empire State University




CDNs “1.0": The basic idea

Push CDNs SearchCorp
e CDN places servers in many networks

e Uses DNS to direct requests to them

e Only for content from CDN customers

e (Content provider pushes data to CDN __]_

e CDN pushes to servers

({6

_]- _]- Comcast

81 Hudson University




82

CDNs

e C(lear to see how this works for static content (I called this “CDN 1.0%)
e Replicate/cache on demand (pull)
e Replicate manually by content provider (push)
e Pick replica/cache server via clever DNS server

e \What about dynamic content/features?
e C(Constant evolution in this direction
e A relatively hot commercial area!



Questions?



TCP and HTTP



85

TCPand HTTP

e (Caching can be a big performance boost!
e Butthe way HTTP uses TCP also makes a big difference!

e \What am | talking about?
o |etssee...



36

TCP and HTTP: Observations

e Many web pages composed of multiple objects/resources
e e.g., HTML file and a bunch of embedded images

e Many of the resources are pretty small — only a few packets

e Small images

e 304 responses (just checking if cache is up to date)
o Efc.

e L|Loading cnn.com resulted in about 40 responses that fit in a packet!

e [CP overheads fetching these can be very large!


http://cnn.com

87

HTTP Performance: TCP and HTTP

Naive approach — one object at a time
e C(Client creates TCP connection

e C(Client sends request

e Server sends response

e Server closes connection

Transmission delay is not the issue (<3ms at SMbps)
Time dominated by RTTs (30ms RTT to Google)

How many RTTs to download 40 small objects?
o 2:-40=80RTTs=2.4 seconds
e \Why not 2 RTTs per object? Why not 37

Client Server
Tcp Syn
TCP syn + acK
i TCP ack

CP fin

HTTP Response i
T TCPfn
<

N TCPau

W
<

>




HTTP Performance: TCP and HTTP

e Concurrent requests
e Make several requests in parallel

e How many RTTs to download 40 small objects, 4 at once?
o 2-40/4 =20 RTTs =600ms (4x improvement)

e Browsers do this — limit has changed (was 6 per site for a long time?)

Client Server  Client Server  Client Server  Client Server




39

HTTP Performance: TCP and HTTP

e Persistent connections
e Maintain TCP connection across multiple requests
e C(Client or server can tear down connection after idle period

e Performance advantages:
e Avoid overhead of connection set-up and tear-down
e Allow TCP congestion window to increase (next lectures)

e How many RTTs to download 40 small objects?
e 40+ 1=41RTTs=1.23 seconds
e \With four concurrent persistent connections? 330ms

e Browsers do it — optional in HTTP 1.0; default in HTTP 1.1

Client Server
\
4/
\
4/
\
4/
\
4/



90

HTTP Performance: TCP and HTTP

e Pipelined connections
e Persistent connections to the next level!
e Send multiple requests at once

e Performance advantages:
e Reduces the RTTs
e Multiple very small requests/responses can be coalesced
into smaller number of larger packets

e How many RTTs to download 40 small objects?
e 2! Probably dominated by transmission delay now!

e Appearedin HTTP 1.1
e .. and promptly disabled

Client Server
\
\
—
4/
—




91

HTTP Performance: TCP and HTTP

e Pipelined connections aren’t actually used
e Butthey seemed like a huge win!
e \What happened?!
e .. primarily two reasons

e Reason 1: Bugs!
e One manifestation: images on page are swapped!
e Often blamed on proxy servers
e My guess: bad adaptation of multithreaded non-pipelined version

e Reason 2: Head-of-line blocking

Client Server

W




HTTP Performance: TCP and HTTP

Client Server Client Server Client Server Client Server
Lg— Downloading six objects §> §:

L—"1 Persistent finishes 5 fairly
. quick, 1 slow

Pipelined finishes 3 very
quick, 3 slow

1 slow at the “Héad of the line”
blocked 2 others

Two Persistent Connections Two Pipelined Connections



93

HTTP Performance: TCP and HTTP

e Pipelined connections aren’t actually used
e Butthey seemed like a huge win!
e \What happened?!
e .. primarily two reasons

e Reason 1: Bugs!
e One manifestation: images on page are swapped!
e Often blamed on proxy servers
e My guess: bad adaptation of multithreaded non-pipelined version

e Reason 2: Head-of-line blocking
e Small requests get stuck behind big one

e HTTP 2 replaced this with multiplexing with better results

Client Server
\
\
—
4/
—




94

HTTP Performance: TCP and HTTP

e Summing up...

e 3Single connection per small download can leaves performance on the floor!

RTTs kill your performance!
www.berkeley.edu (AWS) 50ms

e [hings you can do about it:

. eecs.berkeley.edu 30ms
Concurrent connections

Persistent connections
Pipelined connections
... and combinations thereof!

- Actually used today cs.umass.edu 100ms

www.umass.edu (Akamai) 25ms

WWW.uUsp.br 300ms

(And multiplexed connections in HT TP 2&3)

e \Why doesn't this apply to large downloads?

If transmission time dominates, only solution is get more bandwidth!



Questions?



Have a good week!



Attributions

File:Mozilla dinosaur head logo.png, CC BY 3.0
https://commons.wikimedia.org/wiki/File:Mozilla_dinosaur_head logo.png

File:Printer_dot _matrix EPSON_VP-500.jpg, CC BY-SA 2.0
https://commons.wikimedia.ora/wiki/File:Printer dot matrix EPSON VP-500.ipc

Many slides borrowed/adapted from earlier Berkeley CS168/EE122


https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Mozilla_dinosaur_head_logo.png
https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://commons.wikimedia.org/wiki/File:Printer_dot_matrix_EPSON_VP-500.jpg

