
CS168
Lecture 19

Today in Networking

● 22nd anniversary of Mozilla’s official launch (1998)

● The first web browser to really take off was Mosaic
● Developed at National Center for Supercomputing Applications (NCSA) at

the University of Illinois at Urbana–Champaign
● Funding from “Gore Bill”

● One of its developers (Marc Andreessen) went on to found Netscape
● Internally, Netscape’s browser (Netscape Navigator) was called “Mozilla”
● This browser totally dominated the web for a crucial period

● In 1998, Mozilla the organization released the browser code under an open license
● .. this eventually evolved into Firefox
● .. and all the other things the Mozilla Foundation does for the Internet!

2

The Web

Where are we?

● Before the break, I said we were starting to look at user-facing things

● Started with DNS, which (at least initially) provided a user-facing system for
interacting with the network: names instead of addresses

● Today:

● The web — a game changing user-facing killer app

4

The Web

● Abbreviated history and motivation

● The basics
● HTML, clients, servers, URLs
● Basic HTTP

● Availability, scalability, and performance
● Caching
● Content Delivery Networks
● TCP and HTTP

● Back to basics
● Statelessness

5

The Web: Abbr. Hist.

The Web: Very abbreviated history

● In 1989, Tim Berners-Lee (then a software engineer at CERN) saw a problem
● Lots of information
● Information being added to and changed all the time
● People come and go

● Information gets lost
● It's often recorded — somewhere!

● CERN had a documentation system — CERNDOC
● Hierarchical
● Frustrating — information is not always hierarchical!

● Pitched a solution — “Information Management: A Proposal”
7

The Web: Very abbreviated history

● In 1989, Tim Berners-Lee (then a software engineer at CERN) saw a problem
● Lots of information
● Information being added to and changed all the time
● People come and go

● Information gets lost
● It's often recorded — somewhere!

● CERN had a documentation system — CERNDOC
● Hierarchical
● Frustrating — information is not always hierarchical!

● Pitched a solution — “Information Management: A Proposal”
8

The actual observed working
structure of the organisation is a
multiply connected "web" whose

interconnections evolve with time.

— From "Information Management: A
Proposal”

The Web: Very abbreviated history

● The method of storage must not place its own restraints on the information
● .. a "web" of notes with links … is far more useful than a fixed hierarchical system.

● Remote access across networks
● CERN is distributed, and access from remote machines is essential.

● Heterogeneity
● Access is required to the same data from different types of system

● Non-Centralisation
● Information systems start small and grow. They also start isolated and then

merge. A new system must allow existing systems to be linked together without
requiring any central control or coordination.

● Access to existing data
● If we provide access to existing databases as though they were in hypertext form,

the system will get off the ground quicker.

9 From “Information Management: A Proposal”, Tim Berners-Lee, CERN, 1989, 1990

The Web: Very abbreviated history

● The method of storage must not place its own restraints on the information
● .. a "web" of notes with links … is far more useful than a fixed hierarchical system.

● Remote access across networks
● CERN is distributed, and access from remote machines is essential.

● Heterogeneity
● Access is required to the same data from different types of system

● Non-Centralisation
● Information systems start small and grow. They also start isolated and then

merge. A new system must allow existing systems to be linked together without
requiring any central control or coordination.

● Access to existing data
● If we provide access to existing databases as though they were in hypertext form,

the system will get off the ground quicker.

10 From “Information Management: A Proposal”, Tim Berners-Lee, CERN, 1989, 1990

The Web: Very abbreviated history

● The method of storage must not place its own restraints on the information
● .. a "web" of notes with links … is far more useful than a fixed hierarchical system.

● Remote access across networks
● CERN is distributed, and access from remote machines is essential.

● Heterogeneity
● Access is required to the same data from different types of system

● Non-Centralisation
● Information systems start small and grow. They also start isolated and then

merge. A new system must allow existing systems to be linked together without
requiring any central control or coordination.

● Access to existing data
● If we provide access to existing databases as though they were in hypertext form,

the system will get off the ground quicker.

11 From “Information Management: A Proposal”, Tim Berners-Lee, CERN, 1989, 1990

The Web: Why was it so successful?

● It wasn’t trying to force anything
● Didn’t need to structure data in a particular way
● Didn’t need to store data in a particular format
● Didn't need to use a particular computer/database system
● Didn’t need to abandon existing (working) systems

● Had networks in mind from the beginning!

● Provided integrated interface to scattered information

● Was designed to be a practical solution to a specific problem

● They didn't try to charge for the technology

● .. not all of this was new, but this was where they first all came together
12

Every good work of software
starts by scratching a

developer's personal itch.

— Eric Raymond

The Web: Why was it so successful?

● What made it successful in the beginning is what makes it successful now!

● It gives a lot of leeway for how websites work (didn’t over-specify)

● Not tied to any one underlying system

● No central authority — you can just add your own server/content

● The ability to quickly navigate information from different sources

13

The Web: Why study it?

● The early web was mind-numbingly simple technically
● And was not cutting edge intellectually in terms of information representation
● But it was/is a successful and practical system that changed the world!

● We couldn’t possibly have a class about the Internet that didn’t look at it!
14

● No professor could design something so simple
● Enough functionality to be effective
● Not enough to prove her cleverness

— Professor Scott Shenker

The Web: Basics

The Web: Basic requirements

● Something to represent content with links: HTML

● Client program to access/navigate/display content (e.g. HTML): Web browser

● A way to reference content: URLs
● It’s how you link/embed content to/in other content across a network
● First general “handle” for arbitrary Internet content
● Not just naming a host/processes (address/port)

● Something to host content: Web servers

● A protocol to get content from server to client: HTTP
● Turns web URLs into TCP connections

16

17

● HTML: HyperText Markup Language - Represent content with links
● Browser: Access/navigate/display content
● Provide integrated interface to scattered information

Web basics

<html>
 <head>
 <title>A web page!</title>
 </head>

 <body>
 <p>Finally, a way to share
 memes!
 </p>

 </body>
</html>

Link to another resourceEmbed another resource

Web basics: URL Syntax

scheme://host[:port]/path/resource

18

scheme Typically a protocol: http, ftp, https, smtp, rtsp, etc.

host DNS hostname or IP address

port Defaults to protocol’s standard port
e.g. http: 80 https: 443

path Traditionally reflecting file system

resource Identifies the desired resource (traditionally a file)

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?
box=%40B%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_28917_3552_128995
7100&Search=&Nhead=f&YY=31454&order=down&sort=date&pos=0&view=a&head=b

Web basics: URL Syntax

scheme://host[:port]/path/resource[?query][#fragment]

19

scheme Typically a protocol: http, ftp, https, smtp, rtsp, etc.

host DNS hostname or IP address

port Defaults to protocol’s standard port
e.g. http: 80 https: 443

path Traditionally reflecting file system

resource Identifies the desired resource (traditionally a file)

query e.g., search terms if resource is search program

fragment Sub-part of resource (e.g., paragraph on web page)

Questions?

Flashback: Do we name the right things?

● URLs basically are hostname plus filename

● Is it ideal?
● What if you move the file to another machine?
● What if you want to replicate the file on many hosts so it’s always available? Do

you even care which host it’s stored at?

● Should we be naming the content directly, rather than server+filename?
● See: Information-Centric Networking, Content-Centric Networking, and Named

Data Networking

● Is the web more about accessing services? (your banking, Facebook, …)
● Modern services certainly aren’t tied to a specific host!
● And a lot is dynamic — you’re not fetching a file, you’re running a program
● Should we be naming services directly?

21

Web basics: putting it all together

cs168 server

Some other server

📄.png

● HTML represents content with links/embeddings
● Web servers host the content
● URLs specify location of content
● HTTP gets content from servers based on URL
● Client (browser) displays/navigates content

22

📄.html

http://test.cs168.io/intro.html

Questions?

The Web: Basic requirements

● Something to represent content with links: HTML

● Client program to access/navigate/display content (e.g. HTML): Web browser

● A way to reference content: URLs
● It’s how you link/embed content to/in other content across a network
● First general “handle” for arbitrary Internet content
● Not just naming a host/processes (address/port)

● Something to host content: Web servers

● A protocol to get content from server to client: HTTP
● Turns web URLs into TCP connections

24

Basic HTTP

HyperText Transfer Protocol (HTTP)

● Focusing our discussion on common/current versions of HTTP:
● HTTP 1.0 (1996) and HTTP 1.1 (1997)
● These are (significant) outgrowth of original “HTTP 0.9”

● HTTP 2 published in 2015
● Largely based on work by Google
● As of 2020, 44% of websites use it
● Significant departure; largely performance optimizations

● HTTP 3 forthcoming standard
● Largely based on work by Google
● As of 2020, 5% of websites use it (more or less Google and Facebook?)
● Significant departure; largely performance optimizations

26 https://w3techs.com/technologies/details/ce-http2

https://w3techs.com/technologies/details/ce-http2

HyperText Transfer Protocol (HTTP)

● The basics of HTTP:

● Client-server architecture

● Client connects to server on well-known TCP port 80
● Client issues request
● Server issues reply

● Protocol is “stateless”

27

You should basically
understand what this
is saying.

(We’ll go into details, though.)

We’ll come back to this.

Inside an HTTP exchange Client Server

Establish
connection

Response

Client
request HTTP Request

TCP syn + ack

TCP ack

TCP syn

TCP ack

HTTP Response

...
More Response

End of Response

TCP fin

TCP ack
TCP fin

TCP ack

Close
connection

● (Simple HTTP 1.0 “GET” request)

● Client creates TCP connection (port 80)
● Client sends request

● Server sends response packets
● Client ACKs them

● Note: There may be unshown ACKs

● Server closes connection

Inside an HTTP 1.0/1.1 request

● “Plain text” (“Latin 1” encoding)
● Lines separated with CR LF

29

Request for
http://www.someschool.edu/main/about.html

http://www.someschool.edu/main/about.html

Sidenote: CR and LF

● In common text encodings (ASCII, Latin 1, UTF-8)…
● Common English letters and punctuation are encoded as a single byte…

● 65 is “A”, 97 is “a”, 35 is “#”, etc.
● 0 through 31 are control characters

● 8 is backspace
● 4 is “end of transmission”

● 10 is line feed (LF)
● 13 is carriage return (CR)

● You’re probably familiar with “\n” — newline
● On Unix-like systems, this is really LF — does both
● On Windows, means CR LF
● Open a file in text mode in Python (and other languages), and it does translation
● If you ever open up a file and every line ends with “^M” — those are the carriage returns —

this was a Windows file and you’re on a Unix-like machine
30

Carriage

(body, if there is one)

Inside an HTTP 1.0/1.1 request

● “Plain text” (“Latin 1” encoding)
● Lines separated with CR LF

● Request line:
● Method - “action” to perform. GET/HEAD/POST/…
● Resource - e.g., which thing to fetch
● Protocol version - either 1.0 or 1.1

● Request headers:
● Provide additional information or modify request
● Some required; many optional

● Blank line

● Body:
● Optional data
● Used when submitting data (e.g., a form via POST)

31

Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: en

Request for
http://www.someschool.edu/main/about.html

GET /main/about.html HTTP/1.1

(blank line)

http://www.someschool.edu/main/about.html

(body, if there is one)

Inside an HTTP 1.0/1.1 request

● “Plain text” (“Latin 1” encoding)
● Lines separated with CR LF

● Request line:
● Method - “action” to perform. GET/HEAD/POST/…
● Resource - e.g., which thing to fetch
● Protocol version - either 1.0 or 1.1

● Request headers:
● Provide additional information or modify request
● Some required; many optional

● Blank line

● Body:
● Optional data
● Used when submitting data (e.g., a form via POST)

32

Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: en

Request for
http://www.someschool.edu/main/about.html

GET /main/about.html HTTP/1.1

(blank line)

Where to connect
(and Host: header)

Request Line

http://www.someschool.edu/main/about.html

http://www.someschool.edu/main/about.html

<html>
<head>
<title>About Some School</title>
</head>
...

Connection: close
Date: Thu, 06 Aug 2006 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 2006 ...
Content-Length: 6821
Content-Type: text/html

Inside an HTTP 1.0/1.1 response

● Status line:
● Protocol version - either 1.0 or 1.1
● Status code - 2xx=success, 4xx=error, …
● Reason - Human-readable

● Response headers:
● Provide additional information

● Blank line

● Body:
● Optional data — but very common!
● e.g., it’s the content of about.html!

33

Request for
http://www.someschool.edu/main/about.html

HTTP/1.1 200 OK

(blank line)

http://www.someschool.edu/main/about.html

Questions?

HTTP Methods (Common)

● GET
● The classic!
● Request to download some object
● No body on request, body of reply is the requested object

● POST
● Send data from client to server
● e.g., submitting a web form, adding item to shopping cart, etc.
● Body on request and often on response too

● HEAD
● Basically same as a GET except you don’t want the body (just headers)
● Used to, e.g., see if something exists, when it was modified, etc.

35

HTTP Response status codes (selected)

● 1xx - Informational
● None defined in HTTP 1.0, only a couple in HTTP 1.1

● 2xx - Successful
● 200: OK (e.g., here’s the web page you requested…)

● 3xx - Redirection
● 301: Moved Permanently (Location header tells you new URL)
● 304: Not Modified (not really a redirection; we’ll revisit this one)

● 4xx - Client Error
● 400: Bad Request (catchall for when client messes up, e.g., didn’t include a required header)
● 401: Unauthorized (the resource requires a password or something)
● 404: Not Found (the bane of the early 2000s web, though funny/creative ones helped)

● 5xx - Server Error
● 500: Internal Server Error (catchall for when server configuration goes wrong)

36

⭐

⭐

⭐

HyperText Transfer Protocol (HTTP)

● The basics of HTTP:

● Client-server architecture

● Client connects to server on well-known TCP port 80
● Client issues request
● Server issues reply

● Protocol is “stateless”

37

We’ll come back to this.

Questions?

Where do we go from here?

● We’ve described the basics…
● .. what else do you want?!

● Users
● Fast! (Performant)
● Highly available!
● .. nobody likes a slow or broken site!

● Content provider
● Fast and highly available (make users happy!)
● Scalable (stay fast and highly available even with lots of users/content)

39

Do these goals sound really familiar?

.. they’re basically the same as DNS!

Solve them using same ideas:
 replication and caching!

Plus: Make up for some TCP issues…

HTTP
Availability, scalability, and performance

HTTP: Availability, scalability, and performance

● Like with DNS, these topics are somewhat intertwined!

● We’ll discuss three things here:

● Caching

● Content Delivery Networks (CDNs)

● Interplay of HTTP and TCP

41

Web Caching

HTTP caching: Why does caching work?

● Why does caching work?

● Exploits locality of reference AKA principle of locality

● Spatial locality — If something is accessed, something near it will also
probably be accessed

● Temporal locality — If something is accessed, it’ll probably be
accessed again soon

● Both were a factor if you took CS61C
● One is much more relevant to web caching

43

HTTP caching: How well does caching work?

● How well does caching work?

● Very well up to a point…
● .. file popularity has high peak but long tail

● Large overlap in highly popular content
● But many unique requests
● .. common to many types of cache

● In the real world…
● Content is increasingly dynamic (personalized feeds, many updates)

● But there’s still a lot of static content worth caching
● Images, CSS stylesheets, JavaScript libraries, …

44

Everyone downloads the same viral memes…

.. but everyone has their own weird interests.

HTTP caching: How does caching work?

● How does caching work in HTTP?

● The key is in the headers…

● Response headers:
● Cache-Control
● Expires

45

HTTP caching: the Cache-Control header

● Cache-Control header used for lots of cache-related things
● Used for both requests and responses

● Most important use is for server (response) to specify max-age

● It’s just a TTL in seconds — how long response can be cached

● Cache-Control: max-age=<seconds>

46

HTTP caching: the Expires header

● Cache-Control is only available in HTTP 1.1

● HTTP 1.0 uses Expires response header

● It’s just a TTL in absolute time — when cached response becomes invalid

● Expires: Thu, 31 Dec 2037 23:55:55 GMT

● Servers often send both Cache-Control: max-age and Expires

47

HTTP caching: How does caching work?

● How does caching work in HTTP?

● The key is in the headers…

● Response headers providing TTLs
● Cache-Control: max-age (HTTP 1.1)
● Expires (HTTP 1.0)

● But TTLs aren’t always good enough!
● .. server doesn’t necessarily really know when content will be updated
● .. clients need a way to force skipping of caches!

● Cache-Control: no-cache and Pragma: no-cache request headers

48

HTTP caching: How does caching work?

49

Client Cache Origin Server

📄v1.0
max-age=60max-age=60

Client requests document; cached for one minute at t=0

📄v1.0📄v1.0

📄v2.0📄v1.0

HTTP caching: How does caching work?

50

Client Cache Origin Server

Client requests document; cached for one minute at t=0
Document updated on server at t=1 — refresh would be stale until t=60!

📄v1.0📄v1.0📄v1.0

no-cache

📄v2.0

HTTP caching: How does caching work?

51

Client Cache Origin Server

Client requests document; cached for one minute at t=0
Document updated on server at t=1 — refresh would be stale until t=60!

📄v1.0📄v1.0

User does “hard refresh” at t=10 (shift-click refresh in browser)

max-age=60max-age=60
📄v2.0📄v2.0

no-cache

What if document hadn’t been updated? We just transferred it again for nothing!
v1.0 was already in the caches!

HTTP caching: How does caching work?

● Request header If-Modified-Since: <date>

● If resource has changed since <date>:
● Respond with latest version

● If resource has not changed:
● Respond with 304 - Not Modified

● Includes headers
● But not the body

● .. lets you know you’re up-to-date, but doesn’t waste bandwidth

52

HTTP caching: Typical caching interaction

● Client issues request for resource

● If resource in browser cache:
● If cached version not expired (TTL > 0)

● Assumed to be current — use version in browser cache
● Else, cached version is expired

● Send request using If-Modified-Since: <date of cached version>
● If server’s version is newer:

● Respond with new version (200 response)
● If server’s version has same date:

● Respond with Not Modified (304 response)
● Else, resource not in browser cache

● Send request to server (with no If-Modified-Since)
53

HTTP caching: Typical caching interaction

● Client issues request for resource

● If resource in browser cache:
● If cached version not expired (TTL > 0)

● Assumed to be current — use version in browser cache
● Else, cached version is expired

● Send request using If-Modified-Since: <date of cached version>
● If server’s version is newer:

● Respond with new version (200 response)
● If server’s version has same date:

● Respond with Not Modified (304 response)
● Else, resource not in browser cache

● Send request to server (with no If-Modified-Since)
54

What if server’s version is older?

HTTP caching: Typical caching interaction

● Client issues request for resource

● If resource in browser cache:
● If cached version not expired (TTL > 0)

● Assumed to be current — use version in browser cache
● Else, cached version is expired

● Send request using If-Modified-Since: <date of cached version>
● If server’s version is newer:

● Respond with new version (200 response)
● If server’s version has same date:

● Respond with Not Modified (304 response)
● Else, resource not in browser cache

● Send request to server (with no If-Modified-Since)
55

This example just looked at browser cache.

When browser actually makes requests, they may pass
through other caches that use a similar algorithm!

Questions?

HTTP caching: Two-client example

57

Clients Shared Cache Origin Server

A

B 📄v1.0

Doc TTL
is 5

● Clients are downloading a document.
● Clients have local (browser) caches.
● Clients also share cache in network.
● Document TTL is 5 (minutes).

When? What? Result?

HTTP caching: Two-client example

58

Clients Shared Cache Origin Server

A

B 📄v1.0📄v1.0

📄v1.0

T=0 A requests Fetched from Origin Server

Doc TTL
is 5

When? What? Result?

HTTP caching: Two-client example

59

Clients Shared Cache Origin Server

A

B 📄v1.0📄v1.0

📄v1.0

📄v1.0

T=0 A requests Fetched from Origin Server

T=1 B requests Fetched from Shared Cache

Doc TTL
is 5

When? What? Result?

HTTP caching: Two-client example

60

Clients Shared Cache Origin Server

A

B 📄v2.0📄v1.0

📄v1.0

📄v1.0

T=0 A requests Fetched from Origin Server

T=1 B requests Fetched from Shared Cache

T=2 Doc modified on server! —

Doc TTL
is 5

When? What? Result?

HTTP caching: Two-client example

61

Clients Shared Cache Origin Server

A

B 📄v2.0📄v1.0

📄v1.0

📄v1.0

T=0 A requests Fetched from Origin Server

T=1 B requests Fetched from Shared Cache

T=2 Doc modified on server! —

T=4 B requests Fetched from Browser Cache

Doc TTL
is 5

When? What? Result?

HTTP caching: Two-client example

62

Clients Shared Cache Origin Server

A

B 📄v1.0

📄v1.0

📄v2.0📄v2.0📄v2.0

📄v2.0

T=0 A requests Fetched from Origin Server

T=1 B requests Fetched from Shared Cache

T=2 Doc modified on server! —

T=4 B requests Fetched from Browser Cache

T=6 A requests
Client A sends If-Modified-Since (to Shared Cache)
Shared Cache sends If-Modified-Since (to Origin Server)
v2.0 fetched from Origin Server

📄v1.0

Doc TTL
is 5

When? What? Result?

📄v2.0

HTTP caching: Two-client example

63

Clients Shared Cache Origin Server

A

B 📄v2.0📄v2.0📄v2.0📄v2.0📄v1.0

When? What? Result?

T=0 A requests Fetched from Origin Server

T=1 B requests Fetched from Shared Cache

T=2 Doc modified on server! —

T=4 B requests Fetched from Browser Cache

T=6 A requests
Client A sends If-Modified-Since (to Shared Cache)
Shared Cache sends If-Modified-Since (to Origin Server)
v2.0 fetched from Origin Server

T=7 B requests Client B sends If-Modified-Since (to Shared Cache)
v2.0 fetched from Shared Cache

Doc TTL
is 5

Questions?

HTTP caching: Summary of important cache headers

● Response headers providing TTLs:
● Cache-Control: max-age and Expires

● Request headers allowing overriding of TTLs:
● Cache-Control: no-cache and Pragma: no-cache
● Can be triggered by “shift-refresh”

● Allow requests that skip body if cache is up to date:
● Request header If-Modified-Since: <date>

● Remember: you can have multiple caches along paths!

65

Questions?

HTTP caching: Final word on Cache-Control header

● A couple other important uses of Cache-Control in response…

● Cache-Control: no-store
● Don’t cache this!
● Always request from origin server
● e.g., for things like banking data

● Cache-Control: private
● Content only meant for one user
● Okay to store in private (browser) cache
● .. but don’t store it in shared proxy server cache!

67

HTTP caching: Where?

● We’ve discussed how caching works…
● .. but where are the caches?

● The client!

● Proxy servers

68

Proxy Servers

● Proxy server: A server that makes requests on behalf of a client

● The caches we saw in previous examples fit that definition
● .. caching is a major feature of web proxy servers

● Also often used to enforce policy
● .. company blocks all traffic except through proxy
● .. proxy has whitelist/blacklist

● Also often used to do load balancing
● .. request arrives at proxy
● .. it redirects it to one of several equivalent servers

● Note: our focus is the web, but other protocols have proxy servers too
69

HTTP caching: Where?

Hudson University Empire State University

Comcast

SearchCorpNo caching
● Many clients transfer same information
● Generates unnecessary server load
● Generates unnecessary network load
● Clients experience unnecessary latency

70

HTTP caching: Where?

Hudson University Empire State University

Comcast

SearchCorpReverse Proxies
● Cache documents close to servers
● Reduces server load

● Typically done by content provider

71

HTTP caching: Where?

Hudson University Empire State University

Comcast

SearchCorpForward Proxies
● Cache documents close to clients
● Reduces network traffic
● Reduces latency
● Reduces server load

● Typically done by ISPs or enterprises

72

Not really their concern

HTTP caching: Where?

● We’ve discussed how caching works…
● .. but where are the caches?

● The client!

● Proxy servers
● Forward proxies (near client)
● Reverse proxies (near server)

● Content Delivery Networks (CDNs)
● This is its own subtopic!
● Any questions before we move on to it?

73

Content Delivery Networks

CDNs

● Replication is a huge benefit to availability, scalability, and performance
● We saw this with DNS!
● Can spread the load
● Places content closer to clients (less latency)

● Caching is a form of opportunistic replication
● .. but what if a given organization doesn’t have a forward proxy?
● .. what if content provider and wants its content always replicated?

● Idea: Caching and replication as a service — “CDNs 1.0”

75

CDNs “1.0”

● Large-scale distributed storage infrastructure
● (Usually) administered by one entity
● e.g., Akamai has 275,000+ servers in 136 countries

● How does content provider get its data onto Akamai’s servers?
● Two major ways

● Pull
● Push
● .. we’ll come back to these in a moment

● Both typically used with DNS trick mentioned in previous lecture

76

● Content provider buys service from a CDN, e.g., Akamai

● CDN creates new domain names for the customer content provider
● e.g., e12596.dscj.akamaiedge.net for cnn.com

● The CDN’s DNS servers are authoritative for the new domains

● Content provider modifies its content so that embedded URLs reference the new domains
● “Akamaize” content
● e.g.: http://www.cnn.com/some-photo.jpg becomes http://e12596.dscj.akamaiedge.net/some-photo.jpg

● Initial request goes to CNN (e.g., for main http://www.cnn.com page)

● .. but embedded links go to Akamai, which handles DNS resolution for URL
● .. Akamai DNS servers pick one of their 275,000+ servers to serve it

 (based on IP geolocation, server load, etc. — see Lecture 17 - Intelligent indirection)

CDNs “1.0”: The basic idea

77

http://e12596.dscj.akamaiedge.net
http://cnn.com
http://www.cnn.com/some-photo.jpg
http://e12596.dscj.akamaiedge.net/some-photo.jpg
http://www.cnn.com

● Content provider buys service from a CDN, e.g., Akamai

● CDN creates new domain names for the customer content provider
● e.g., e12596.dscj.akamaiedge.net for cnn.com

● The CDN’s DNS servers are authoritative for the new domains

● Content provider modifies its content so that embedded URLs reference the new domains
● “Akamaize” content
● e.g.: http://www.cnn.com/some-photo.jpg becomes http://e12596.dscj.akamaiedge.net/some-photo.jpg

● Initial request goes to CNN (e.g., for main http://www.cnn.com page)

● .. but embedded links go to Akamai, which handles DNS resolution for URL
● .. Akamai DNS servers pick one of their 275,000+ servers to serve it

 (based on IP geolocation, server load, etc. — see Lecture 17 - Intelligent indirection)

CDNs “1.0”: The basic idea

78

A: Add a CNAME record to CNN nameserver
(CNAME, cdn.cnn.com, e12596.dscj.akamaiedge.net)

DNS Pop Quiz
Q: What if CNN doesn’t want to embed a weird Akamai
domain name in its pages?

http://e12596.dscj.akamaiedge.net
http://cnn.com
http://www.cnn.com/some-photo.jpg
http://e12596.dscj.akamaiedge.net/some-photo.jpg
http://www.cnn.com
http://cdn.cnn.com
http://e12596.dscj.akamaiedge.net

CDNs “1.0”: The basic idea

● How does content provider get data onto CDN’s servers?

● Pull
● Akamai servers act like a cache
● Content provider gives CDN “origin” URL
● When a client requests from Akamai

● .. if cached, serve it
● .. if not cached, request (“pull”) from origin, cache it, serve it

● Push
● Akamai servers just act like normal servers
● Content provider uploads content to CDN (“pushes” their content)
● When a client requests from Akamai, just serve like any web server

● Various tradeoffs
● Short version: pull is less work for content provider but push gives more control

79

CDNs “1.0”: The basic idea

Hudson University Empire State University

Comcast

SearchCorpPull CDNs
● CDN places caches in many networks
● Uses DNS to direct requests to them
● Only for content from CDN customers

80

CDNs “1.0”: The basic idea

Hudson University Empire State University

Comcast

SearchCorpPush CDNs
● CDN places servers in many networks
● Uses DNS to direct requests to them
● Only for content from CDN customers
● Content provider pushes data to CDN
● CDN pushes to servers

81 CDN Corp

CDNs

● Clear to see how this works for static content (I called this “CDN 1.0”)
● Replicate/cache on demand (pull)
● Replicate manually by content provider (push)
● Pick replica/cache server via clever DNS server

● What about dynamic content/features?
● Constant evolution in this direction
● A relatively hot commercial area!

82

Questions?

TCP and HTTP

TCP and HTTP

● Caching can be a big performance boost!

● But the way HTTP uses TCP also makes a big difference!

● What am I talking about?
● Let’s see…

85

TCP and HTTP: Observations

● Many web pages composed of multiple objects/resources
● e.g., HTML file and a bunch of embedded images

● Many of the resources are pretty small — only a few packets
● Small images
● 304 responses (just checking if cache is up to date)
● Etc.

● Loading cnn.com resulted in about 40 responses that fit in a packet!

● TCP overheads fetching these can be very large!

86

http://cnn.com

HTTP Performance: TCP and HTTP

Client Server

HTTP Get

TCP syn + ack

TCP ack

TCP syn

HTTP Response

TCP fin

TCP ack
TCP fin

TCP ack

● Naive approach — one object at a time
● Client creates TCP connection
● Client sends request
● Server sends response
● Server closes connection

● Transmission delay is not the issue (<3ms at 5Mbps)
● Time dominated by RTTs (30ms RTT to Google)

● How many RTTs to download 40 small objects?
● 2 · 40 = 80 RTTs
● Why not 2 RTTs per object? Why not 3?

87

 = 2.4 seconds

HTTP Performance: TCP and HTTP

● Concurrent requests
● Make several requests in parallel

● How many RTTs to download 40 small objects, 4 at once?
● 2 · 40/4 = 20 RTTs = 600ms (4x improvement)

● Browsers do this — limit has changed (was 6 per site for a long time?)

88

Client Server Client Server Client Server Client Server

HTTP Performance: TCP and HTTP

● Persistent connections
● Maintain TCP connection across multiple requests
● Client or server can tear down connection after idle period

● Performance advantages:
● Avoid overhead of connection set-up and tear-down
● Allow TCP congestion window to increase (next lectures)

● How many RTTs to download 40 small objects?
● 40 + 1 = 41 RTTs = 1.23 seconds
● With four concurrent persistent connections? 330ms

● Browsers do it — optional in HTTP 1.0; default in HTTP 1.1

89

Client Server

HTTP Performance: TCP and HTTP

● Pipelined connections
● Persistent connections to the next level!
● Send multiple requests at once

● Performance advantages:
● Reduces the RTTs
● Multiple very small requests/responses can be coalesced

into smaller number of larger packets

● How many RTTs to download 40 small objects?
● 2! Probably dominated by transmission delay now!

● Appeared in HTTP 1.1
● .. and promptly disabled

90

Client Server

HTTP Performance: TCP and HTTP

● Pipelined connections aren’t actually used
● But they seemed like a huge win!
● What happened?!

● .. primarily two reasons

● Reason 1: Bugs!
● One manifestation: images on page are swapped!
● Often blamed on proxy servers
● My guess: bad adaptation of multithreaded non-pipelined version

● Reason 2: Head-of-line blocking

91

Client Server

HTTP Performance: TCP and HTTP

92
Two Persistent Connections

Client Server Client Server

Two Pipelined Connections

Server Client ServerClient

Downloading six objects

Persistent finishes 5 fairly
quick, 1 slow

Pipelined finishes 3 very
quick, 3 slow

…
1 slow at the “head of the line”

blocked 2 others

HTTP Performance: TCP and HTTP

● Pipelined connections aren’t actually used
● But they seemed like a huge win!
● What happened?!

● .. primarily two reasons

● Reason 1: Bugs!
● One manifestation: images on page are swapped!
● Often blamed on proxy servers
● My guess: bad adaptation of multithreaded non-pipelined version

● Reason 2: Head-of-line blocking
● Small requests get stuck behind big one

● HTTP 2 replaced this with multiplexing with better results
93

Client Server

HTTP Performance: TCP and HTTP

● Summing up…

● Single connection per small download can leaves performance on the floor!
● RTTs kill your performance!

● Things you can do about it:
● Concurrent connections
● Persistent connections
● Pipelined connections
● .. and combinations thereof!

● (And multiplexed connections in HTTP 2&3)

● Why doesn’t this apply to large downloads?
● If transmission time dominates, only solution is get more bandwidth!

94

Actually used today

www.berkeley.edu (AWS) 50ms

30mseecs.berkeley.edu

100mscs.umass.edu

300mswww.usp.br

25mswww.umass.edu (Akamai)

Questions?

Have a good week!

Attributions

File:Mozilla dinosaur head logo.png, CC BY 3.0
https://commons.wikimedia.org/wiki/File:Mozilla_dinosaur_head_logo.png

File:Printer_dot_matrix_EPSON_VP-500.jpg, CC BY-SA 2.0
https://commons.wikimedia.org/wiki/File:Printer_dot_matrix_EPSON_VP-500.jpg

Many slides borrowed/adapted from earlier Berkeley CS168/EE122

https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Mozilla_dinosaur_head_logo.png
https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://commons.wikimedia.org/wiki/File:Printer_dot_matrix_EPSON_VP-500.jpg

