Notes on Software Defined Networking (SDN)
Narek Galstyan and Scott Shenker

Caveats: This overview focuses on the conceptual foundations of SDN and presents a
very idealized view of the basic SDN mechanisms. Talk to a real networking person for
the practical details, which are far more complicated. Also, please see the selection of
SDN-related papers referenced in the Appendix of these notes.

Context: Internet functionality can be divided into the dataplane and the control plane.
The dataplane defines how a router/switch handles an arriving packet, based on local
forwarding state; this is an inherently local process, with no external dependencies. The
control plane defines how a router/switch establishes that forwarding state, which is an
inherently nonlocal process because forwarding state must be based on knowledge of
the overall network (i.e., how can you determine where to forward a packet without
knowledge of the rest of the network?).

What is Software Defined Networking (SDN)? SDN is nothing more than how to
arrange functionality in the Internet’s control plane. This may not seem like much of an
innovation, but remember that the Internet architecture is nothing more than how to
arrange functionality in the Internet’s dataplane. The dataplane is organized in layers,
and we will soon see that SDN organizes the control plane into layers.

Why was SDN needed? The original control plane had only one goal: deliver packets
from one host to another. In this case, the control plane merely needs routing protocols,
such as those you’ve learned about in this class (e.g., link-state, distance-vector). Later
in its evolution, the Internet was broken into autonomous systems (ASes) or domains,
and the control plane had to deal with two routing problems: intradomain and
interdomain. At this point, these two classes of routing protocols were all that was
needed for the early Internet. However, as the Internet started to be used by
enterprises, several new requirements arose. These include:

e |[solation of virtual LANs (see the appendix for some background on vLANS): this
is to limit the scope of L2 broadcasts, which is done by defining virtual LANs
(VLANSs), with each broadcast packet indicating which vLAN it belongs to. This
requires establishing forwarding state telling switches which ports to use to
forward broadcast packets for each vLAN. This was typically done by manual
configuration (i.e., a sysadmin entering them into a switch’s forwarding state).

e Access control: Enterprises don’'t want all hosts to reach all other hosts (e.g.,
your bank doesn’t want your laptop in the lobby to be able to reach their backend
database that keeps account records). This is done by inserting Access Control
Lists (ACLs) in routers that specify which packets can be forwarded to a
particular destination. For instance, a forwarding entry might indicate the logical
equivalent of “drop all packets from host X to host Y” if the network operator does
not want packets from X to reach host Y. These ACLs were typically installed by
manual configuration.

e Traffic engineering: Once the Internet became a serious business, the ISPs had
to take great care that their links did not get overloaded. This requires making
routing decisions that spread the load over all links to maximize the total capacity.
To accomplish this, algorithms were designed that would take as input the map of
the network and the traffic matrix of the network (how much traffic was going
between every two endpoints) and then compute the forwarding state of each
router. Because of the complexity of these computations, they were done in a
centralized manner.

Thus, soon after going commercial the Internet’s control plane required a collection of
largely disjoint mechanisms: distributed algorithms (for intradomain and interdomain
routing), manual configuration (for ACLs and vLANSs), and centralized computation (for
traffic engineering). There was no modularity (i.e., no reuse of components between
these mechanisms), so each mechanism was largely designed from scratch. As
networks became larger, the ad hoc nature of the control plane caused significant
problems with network management. SDN arose from a desire to develop a modularity
for the control plane. See the lecture for a more detailed description of the use case
(multi-tenant datacenters) that eventually led to SDN’s adoption.

What is the scope of SDN? This is an issue that Scott forgot to mention in the lecture.
Almost all control plane issues (aside from interdomain routing) involve what happens
within a given particular domain’s network (e.g., the internal network used by a
company, university, or ISP) or even just a portion of that network (e.g., a specific
datacenter or building). Thus, SDN is designed to manage the control plane in only a
narrowly defined scope under the control of a single administrative entity. For now, think
of SDN as controlling UC Berkeley’s network or that of a large datacenter (by large we
mean hundreds of thousands of servers and tens of thousands of routers/switches).

What is the modularity of the control plane? This is the central question of SDN. The
fundamental task of the control plane is to compute the forwarding state. We can break
this down into several subtasks (the ordering here is different from the lecture, but the
content is the same).

First, we recognize that the control plane needs to know the overall topology of the
network in order to accomplish many of its tasks. Thus, one task is to collect this
topology information and present it to whatever control program will compute the
forwarding state (such as a routing algorithm or an access control algorithm). This is
accomplished by something called a Network Operating System (NOS), which runs on
some servers within the network. Think of the NOS as logically centralized (i.e., it can
be represented by a single logical server) but is physically distributed (using various
replication algorithms). Each router/switch reports to the NOS which neighbors it is
connected to, along with information about those links (latency, bandwidth, etc.). The
NOS can then construct (much like in link-state routing algorithms) the overall network
topology.

Second, once this topology information is gathered, and the control program has
computed the forwarding state, this state must be communicated to the
switches/routers. Vendors of networking equipment often have their own proprietary
hardware and software, which use their own formats for specifying forwarding entries.
Thus, the second subtask is to (i) allow the NOS to communicate the set of forwarding
entries to each router/switch, and then (ii) convert these generic forwarding entries to
the vendor-specific format of the receiving router/switch. OpenFlow is the proposal for
this protocol.

Combining these two abstractions, you end up with the picture on the following page.
The control plane consists of a control program (routing, access control, etc.) that uses
the network graph constructed by the NOS. After the control program computes the
desired forwarding entries (in the OpenFlow format), it then passes them to the NOS
which uses OpenFlow to communicate these flow entries to the individual
routers/switches. The OpenFlow implementation on these routers/switches convert
these flow entries to their formats used by those particular routers/switches.

The control programs and the NOS can be thought of as the initial two “layers” of the
control plane. When we have a layered architecture like this, we can think of the
northbound interface to mean the interface to the layer above (with the northbound
interface of the top layer being exposed to the network operator), and the southbound
interface referring to the interface to the layer below (with the southbound interface of
the bottom layer being exposed to the physical routers/switches).

routing, access control, etc.

| Control ProEram]
Global Network View C@)

However, this approach requires a sophisticated control program that can compute all of
the forwarding entries. In the hope of simplifying the task of writing control programs, we
can insert a new abstraction called the virtualization layer. The virtualization layer is
tailored to the specific task (e.g., VLANs or access control) and presents a simplified
version of the network that contains only enough information to allow the control
program (or network operator) to specify the desired functionality. For instance, for
access control, the virtualization layer can just present a single switch with all hosts
showing up as endpoints, and the control program merely states which pairs of hosts

can communicate. The virtualization layer then translates these specifications into a set
of forwarding entries on the full network graph that achieves the desired goal. Think of
the virtualization layer as a compiler that translates between high-level control plane
goals and low-level implementations of those goals.

With this design we then can describe the full SDN architecture as consisting of three
layers, where we use the term “configuration” to refer to the set of forwarding entries of
the network.

1. A set of control programs that dictate access control, traffic engineering, etc.
a. Northbound interface: Allows network operator to specify their goals
b. Southbound interface: The control program configures the abstract
network view as provided by the virtualization layer.

2. The virtualization layer that accepts the configuration of the abstract network
from the control program and converts it into a full set of network forwarding
entries for the network graph.

a. Northbound interface: An abstract network view
b. Southbound interface: A set of forwarding entries for the full network view

3. The NOS that accepts the configuration of the full network view from the
virtualization layer and communicates the specific forwarding entries to each
individual router/switches.

a. Northbound interface: An abstract network view
b. Southbound interface: A set of forwarding entries for the full network view

The following two pictures show the flow of information up (as information is collected
from routers/switches, used to construct a network view, which is then passed to the
virtualization layer) and the flow of information down (as the configuration of the abstract
network view is converted into the configuration of the full network, and then passed to
switches/routers).

Information Flowing Up

Abstract Network View

Virtualization Layer :

Global Network View

()
()
Network OS A .'

Information Flowing Down

l‘ Control ProEram]

Configuration of Abstract Network View

)
: T ° ()
Virtualization Layer ¥ e

Configuration of Global Network View

()
Network OS A .'

Why is SDN useful? SDN modularizes the control plane, but why does this help? SDN
delivers two benefits, both of which are standard results of modularization in other
large-scale systems. The first benefit is a separation of concerns so that one can evolve
parts of the SDN design without disturbing other parts. For instance, one can introduce
new control programs without changing the NOS or OpenFlow (and in some cases
without changing the virtualization layer, if the abstract view does not need to change).
This is just like in the Internet’s dataplane, where changing an application or a transport
protocol requires no change in IP or in L2 designs.

The second benefit is that SDN pushes all the complexity into reusable code. The hard
parts of the control plane are in the virtualization layer (to translate configurations of
abstract network views into configurations of full network views) and the NOS (to collect
the necessary topology). These need not change very often. Just as compilers are
complicated beasts that make writing programs easier, the SDN layers are complicated
pieces of code that make writing control programs easier (e.g., a routing protocol
because just a graph algorithm).

The End: This concludes our short summary of the technical content of the lecture. The
lecture itself contains more information on how we managed to get this deployed
without any hardware changes.

Appendix

Some notes on VLANSs: This course has previously covered local area networks
(LANSs), particularly how the Spanning Tree Protocol is used to enable loop-free
flooding. As discussed, LANs provide seamless connectivity, host discovery, and
communication, all independent of physical topology and wiring. However, these
previous discussions assumed that LANs were small, so the issues of security or
scaling did not arise.

These issues do arise when there are hundreds or thousands of hosts on a single LAN.
For example, maybe you do not want all computers in the entire building to be able to
discover the printer in your office. We can solve this problem by breaking down the
single physical LAN into multiple logical LANs, called virtual LANs or vLANSs. In the
example given, it might be preferable to have a separate vLAN per floor of the building.

To achieve this, routers and switches must be configured to behave as if these VLANs
were indeed separate. In particular, when packets are broadcast each router/switch
must ensure that packets are only sent on the appropriate vVLAN. This was typically

https://www.youtube.com/watch?v=73sf1E58lek

done by having network operators manually configure the routers/switches. As LANs
became bigger, this manual configuration of vVLANS in routers became painful.

Want to learn more about SDN? Below is a select list of publications on SDN. None of
the content from these papers will be on the exam. These are here as further reading, in
case you find the topics discussed in lecture interesting or would like to know what
approaches have been proposed in the community.

NOX: Towards an Operating System for Networks - This was the first paper on a
network operating system. NOX itself was not commercially deployed, but was a
forerunner for the commercial systems that followed.

Onix: A Distributed Control Platform for Large-scale Production Networks - The
paper describes the first commercial instantiation of an SDN controller. It provided a

general purpose high level API that provided a global view of the network against which
network control logic could be implemented. At a high level, Onix addresses the exact
pain points described in the lecture but the paper goes into more detail about certain
tradeoffs, comparisons to alternatives and important challenges.

RCP: The Case for Separating Routing from Routers - The paper notices that IP
routers currently have two jobs: running a distributed route selection algorithm and
forwarding packets along found routes. Motivated by similar pain points described in
lecture, the authors propose a mechanism that removes routing from routers and puts it
in Routing Control Platform (RCP) which selects routes on behalf of routers and installs
the selected routes on IP routers. RCP focuses on software defined interdomain control
planes while the lecture focused on software defined intradomain control planes.

A clean slate 4D approach to network control and management - The paper is one
of the first attempts to address the control plane management and scalability issues
discussed in lecture. The authors identify four pillars - decision, dissemination,
discovery, and data - around which network management should be built.

Fabric: A Restrospective on Evolving SDN - This paper takes a critical look at the
original SDN formulation and concludes that while “a significant step forward in some
respects, it was a step backwards in others” and proposes how to change SDN to avoid
those problems. This is a short paper that is easy to read.

https://dl.acm.org/doi/10.1145/1384609.1384625
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Koponen.pdf
https://dl.acm.org/doi/pdf/10.1145/1016707.1016709
https://dl.acm.org/doi/abs/10.1145/1096536.1096541
http://yuba.stanford.edu/~casado/fabric.pdf

