
Announcement

• Next week, we will not have in-person discussion sections due to labor day

• However, we will still have a worksheet and walkthrough will be recorded
and posted on the course website.

CS168, Lecture 3

How the Internet Works :
A bottom-up view (contd.)

Sylvia Ratnasamy
Spring 2022

Today

•Wrap up our discussion of circuit & packet switching

• Start our top-down overview

Recall, from last lecture…

Two canonical approaches to sharing
• Reservations: end-hosts explicitly reserve BW when needed (e.g., at the start of a flow)
• Best-effort: just send data packets when you have them and hope for the best ...

Two canonical designs to implementing these approaches
• Reservations via circuit switching
• Best-effort via packet switching

Idea: Reserve network capacity for all packets in a flow

10Mbps? 10Mbps?

10Mbps?

10Mbps?👍‍

👍‍

👍‍👍‍

Recall, from last lecture: circuit switching

DONE! DONE!

DONE!

DONE!

1110011 UCB

Recall, from last lecture: e.g., packet switching

Allocate resources to each packet independently

Circuit vs. Packet switching: which is better?

•What are the dimensions along which we should compare?

• As an abstraction to applications
• Efficiency (at scale)
• Handling failures (at scale)
• Complexity of implementation (at scale)

From an application viewpoint

• Circuits offer better application performance (reserved bandwidth)

• More predictable and understandable behavior (w/o failures)

• Also a very intuitive abstraction in support of business models!

Which makes more efficient use of network capacity?

Answer: Packet switching is typically more efficient

• But how much better depends on the “burstiness” of the traffic sources

Example#1: Three constant rate sources sharing a link

• Total link bandwidth is 30Mbps

• Demands: Each source needs a constant rate of 10Mbps

• Circuit and packet switching give approximately the same result
• Every source gets what they need
• No wasted bandwidth
• ….

10

10Mbps

Time

Link capacity = 30Mbps

Example#1: Three constant sources

10Mbps

source A

source B

10Mbps source C

12Mbps

Time

11Mbps

13Mbps

Example#2: Three “bursty” sources

Link capacity = 30Mbps

12Mbps

What happens with reservations?
Allow two flows to reserve peak rate

Time

Link capacity = 30Mbps

11Mbps

13Mbps Must turn away third flow!

All good! No overloading

Time

What happens with best-effort?

Link capacity = 30Mbps

Smooth vs. Bursty Applications

• Characterized by the ratio between an app’s peak to average transmission rate

• Some apps have relatively small peak-to-average ratios
• Voice might have a ratio of 3:1 or so

• Data applications tend to be rather bursty
• E.g., ratios of 100 or greater are common when web browsing

• That’s why the phone network used reservations and the Internet does not!

Which makes more efficient use of network capacity?

Answer: Packet switching is typically more efficient

• But how much better depends on the “burstiness” of the traffic sources

• This is because packet switching implements statistical multiplexing at a finer granularity
than circuit switching (packets vs. flows)

Other differences in efficiency?

• Circuit switching spends some time to setup / teardown circuits
• Very inefficient when you don’t have much data to send! (short flows)

•What are the dimensions along which we should compare?

• As an abstraction to applications (endhosts)
• Efficiency
• Handling failures (at scale)
• Complexity of implementation (at scale)

Circuit vs. Packet switching: which is better?

1110011 MIT

What happens in the event of a failure?

With packet switching?

1110011 MIT

What happens in the event of a failure?

With circuit switching?

10Mbps? 10Mbps?

10Mbps?

10Mbps

10Mbps?

10Mbps? 10Mbps? 10Mbps?

Recap: Failure Recovery in Packet Switching

• Link goes down, then what?

• Network must detect failure

• Network recalculates routes
• (Job of the routing control plane)

• Endhosts and individual flows do nothing special
• Except cope with the temporary loss of service

23

Recap: Failure Recovery in Circuit Switching

• Network must do all the things needed for packet switching

• And in addition, endhosts must
• detect failure
• teardown old reservations
• send a new reservation request

• All impacted endhosts must do this, for each impacted flow!!

• If millions of flows were going through a switch, then millions of reservation
requests are being simultaneously re-established! 24

•What are the dimensions along which we should compare?

• As an abstraction to applications (endhosts)
• Efficiency
• Handling failures (at scale)
• Complexity of implementation (at scale)

Circuit vs. Packet switching: which is better?

A 21 4 B

3

10Mbps? 10Mbps?

10Mbps?

10Mbps?👍‍

👍‍

👍‍👍‍

(1) source sends a reservation request to the destination

Recall…

How do switches know that the reservation went through? What happens if the reservation request is lost mid way?What happens if the confirmation that the reservation made it is lost?What should the endhost do if the reservation is declined?What happens if the underlying route changes?And on and on….

Recap: Circuit vs. Packet Switching

• Pros for circuit switching:
• Better application performance (reserved bandwidth)
• More predictable and understandable (w/o failures)

• Pros for packet switching:
• Better efficiency
• Faster startup to first packet delivered
• Easier recovery from failure
• Simpler implementation (avoids dynamic per-flow state management in switches)

27

What does the Internet use today?

• Packet switching is the default
• Limited use of RSVP (“Resource Reservation Protocol”) within one domain

• But you can also buy a dedicated circuit (e.g., MPLS circuits, leased lines, etc.)
• Often used by enterprises from one branch location to another (or to/from cloud)
• Very expensive (e.g., 10-20x higher than a normal connection)
• Often statically set up (manually), long-lived (e.g., years), and per user (vs. per flow)
• So, a far cry from the vision of dynamic reservations that we just discussed

28

à the “public” Internet

Circuit vs. Packet Switching: A bit of history

• The early Internet (70-80s): packet switched
• Well suited to (bursty) file transfer applications

• The next iteration (late 80s-90s): research & industry believed we’d need circuit switching
• Envisioned that voice/live TV/ would be the Internet’s true killer app
• Spent 10+ years trying to realize this vision (many Berkeley folks were pioneers in this space!)

• Ultimately, a failed vision. Why?
• All the reasons we discussed…
• …and people rewrote apps to be adaptive (turns out we didn’t really need guaranteed BW!)
• …and Email and the web emerged as the killer apps (of the time)

29A lesson in how technology can transform user behavior!

Questions??

Let’s take a closer look at packet switching ….

BW
 à

pkt transmission time

Recall, packets in flight: “pipe” view

switch

No Overload!

Transient Overload

Not a rare event!

Queue

Queue

Queue

Queue

Queue

Queue

Queues absorb transient bursts!

What about persistent overload?
Will eventually drop packets

Queues introduce queuing delays

• Recall, packet delay = transmission delay + propagation delay

• With queues: packet delay = transmission delay + propagation delay + queueing delay

Recall: life of a packet so far…

• Source has some data to send to a destination
• Chunks it up into packets: each packet has a payload and a header
• Packet travels along a link
• Arrives at a switch; switch forwards the packet to its next hop
• And the last step repeats until we reach the destination …

• Source has some data to send to a destination
• Chunks it up into packets: each packet has a payload and a header
• Packet travels along a link
• Arrives at a switch; switch forwards the packet to its next hop
• switch may buffer, or even drop, the packet

• And the last step repeats until we reach the destination …
• or the packet is dropped

See any new challenges that this introduces?

Recall: life of a packet so far…[updated]

Challenge: Reliable packet delivery

• Packets can be dropped along the way
• Buffers in switch can overflow
• Switch can crash while buffering packets
• Links can garble/corrupt packets

• Given an unreliable network, how do we make sure the destination receives its packets?
• Or at least know if they are delivered….

45

Challenge: Congestion control

• Packet switching means network capacity is allocated on-demand
• But endhosts independently decide at what rate they will send packets!
• This can be tricky!
• How fast I send packets impacts whether your packets are dropped
• What’s a good rate at which I should send my packets?

• Hence, congestion control:
• How do we ensure that (endhosts’) independent decisions lead to a good outcome?

46

Hence, our important topics for the semester

• How do we name endhosts on the Internet? (naming)
• How do we address endhosts? (addressing)
• How do we map names to addresses? (mapping names to addresses)
• How do we compute forwarding tables? (routing control plane à project 1)
• How do we forward packets? (routing data plane)
• How do hosts communicate reliably? (reliable packet delivery à project 2)
• How do sources know at what rate they can send packets? (congestion control)

What Else?

• Security? (< 1 lecture)
• How do we organize and download content (1 lecture)
• HTTP and the web

• How do we manage our networks? (1 lecture)
• SDN and more

• What else happens to packets on path? (< 1 lecture)
• Firewalls, Load Balancers, ...

• Specialized networks? (~3 lectures)
• Wireless/cellular, Datacenters, Cloud, ...

48

Recap: key takeaways from our bottom-up overview

• What is a packet?

• Approaches to sharing the network – circuit vs. packet switching -- and their tradeoffs

• An overall sense of the life of a packet
• We’ll continue to refine this picture over the course of the semester

• An overall sense of the topics we’ll be studying and why they’re fundamental

49

Changing Perspective

l Designing the Internet: a top-down approach

l In the process, discuss a few enduring ideas:
l Layering
l The end-to-end principle
l Fate sharing

1

How do you solve a problem?

1. Define the problem (and why you’re solving it!)

2. Decompose it (into tasks and abstractions)

3. Assign tasks to entities (who does what)

2

The Internet’s problem definition

l Support the transfer of data between endhosts
l ... across multiple networks

l The Internet

l More on this in a later lecture!

3

How do you solve a problem?

1. Define the problem (and why you’re solving it!)

2. Decompose it (into tasks and abstractions)

3. Assign tasks to entities (who does what)

4

Modularity

Modularity based on abstraction is the way things are done
– Barbara Liskov, Turing lecture

What is Modularity?

l Decomposing systems into smaller units
l Providing a “separation of concerns”

l Plays a crucial role in computer science…

l The trick is to find the right modularity
l Our exercise in today’s lecture

6

Network System Modularity
l The need for modularity still applies

l And is even more important! (why?)

l Normal modularity organizes code

l But network implementations are not just
distributed across many lines of code…
l Also distributed across many devices (hosts, routers)
l … and different players (clients, server, ISPs)

7

How do we decompose the job of
transferring data between end-hosts?

Dear Andy,

Your days are numbered.

-- Satya

Inspiration…

l CEO A writes letter to CEO B
l Folds letter and hands it to administrative aide

l Aide:
l Puts letter in envelope with CEO B’s full name
l Takes to FedEx

l FedEx Office
l Puts letter in larger envelope
l Puts name and street address on FedEx envelope
l Puts package on FedEx delivery truck

l FedEx delivers to other company

CEO

Aide

FedEx

CEO

Aide

FedExFedex Envelope (FE)

The Path of the Letter

Letter

Envelope

• “Peers” understand the same things
• No one else needs to
• Lowest level has most “packaging”

Thought Experiment

l How would you break the Internet into tasks?

l Just focus on what is needed to get packets
between processes on different hosts….

l Do not consider application or control tasks
l Naming, computing forwarding tables, etc.

11

Breakdown into Tasks

l Bits across a wire
l Packets across a wire
l Deliver packets across local network

l Local addresses
l Deliver packets across multiple networks

l Global addresses
l Deliver data reliably
l Do something with the data

12

Breakdown into Tasks

l Bits across a wire
l Packets across a wire and local network

l Local addresses
l Deliver packets across multiple networks

l Global addresses
l Deliver data reliably
l Do something with the data

13

In the Internet: organization

Applications

Reliable (or unreliable) data delivery

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

In the Internet: organization

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) data delivery

Best-effort local packet delivery

Physical transfer of bits

Best-effort global packet delivery

A layered architecture

l Layer = a part of a system with well-defined
interfaces to other parts

l One layer interacts only with layer above and
layer below

l Two layers interact only through the interface
between them

16

In the Internet: organization

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) data delivery

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

Application

Transport

Network

Datalink

PhysicalL1

L2

L3

L4

L7

nope,
not a typo

Ancient history (late 1970s)

Application

Presentation

Session

Transport

Network

Datalink

Physical1

2

3

4

5

6

7
The Open Systems Interconnect (OSI) model developed

by the International Organization for Standardization
(ISO) included two additional layers that are often

implemented as part of the application

Questions?

19

