Routing #2

Today in Computing

- First patent for integrated circuits was filed 61 years ago today by Jack Kilby of Texas Instruments
- Sort of the beginning of the computer chip!
- Bob Noyce invented the second IC shortly after...
 - His was made of silicon instead of germanium...
 - He later went on to co-found Intel...
- But still, it all goes back to Jack Kilby on February 6th of 1959
- And in today in Internet history...

Never gonna give you up

- Never gonna give you up
- Never gonna let you down
- Never gonna run around and desert you

Today

- Kinds of routing, kinds of routers
 - Intradomain and Interdomain routing (IGPs and EGPs)
 - Internal and External routers
- "Least-cost" routing
- Trivial and static routes
- Distance-Vector in depth

Kinds of routing, kinds of routers

- The Internet does not work by having a single giant routing protocol
- The Internet is a network of networks
 - The best way to route on one may not be the best way on another (why not?)
 - Networks differ!
 - Physical size, number of hosts, number of routers, bandwidth, latency, failure rate, topology (densely vs. sparsely connected, etc.), support staff size, when built, ...
- So...
 - Let individual networks choose how to route inside their network (intradomain)
 - o ... all networks agree on how to route *between* themselves and other networks (interdomain)

- Intradomain routing
 - More or less means routing within a single network (technically an "Autonomous System")
 - Protocols used are often called IGPs or *Interior Gateway Protocols*
 - A number are actively used today

- Intradomain routing
 - More or less means routing within a single network (technically an "Autonomous System")
 - Protocols used are often called IGPs or *Interior Gateway Protocols*
 - A number are actively used today
- Interdomain routing
 - Routing between networks (ASes)
 - The routing glue which binds many networks into the Internet!
 - Protocols used are called EGPs or Exterior Gateway Protocols
 - Only one is ever used at a time! All ASes agree!
 - Internet has used BGP since the mid-1990s.

- Intradomain routing
 - More or less means routing within a single network (technically an "Autonomous System")
 - o Protocols used are often called IGPs or *Interior Gateway Protocols*
 - A number are actively used today
- Interdomain routing
 - Routing between networks (ASes)
 - The routing glue which binds many networks into the Internet!
 - Protocols used are called EGPs or Exterior Gateway Protocols
 - Only one is ever used at a time! All ASes agree!
 - Internet has used BGP since the mid-1990s.
- Much of discussion this & next week is very general (true of any routing)
 - .. but focus is on intradomain routing
 - .. we'll talk about BGP specifically later (week 7?)

Questions?

Last time, we said we wanted "good" routes

- Last time, we said we wanted "good" routes
- Goal #1: Routes that work!
 - State must not have any loops. Must not have any dead ends. Both of these.

- Last time, we said we wanted "good" routes
- Goal #1: Routes that work!
 - State must not have any loops. Must not have any dead ends. Both of these.
- Goal #2: Routes that are in some way "good"
 - Commonly this is done by minimizing some "bad" quantity which we might call a cost
 - Hence least-cost routing!

- Last time, we said we wanted "good" routes
- Goal #1: Routes that work!
 - State must not have any loops. Must not have any dead ends. Both of these.
- Goal #2: Routes that are in some way "good"
 - Commonly this is done by minimizing some "bad" quantity which we might call a cost
 - Hence *least-cost routing*!
- What did we (attempt to?) minimize in the routing activity we did last time?

- Last time, we said we wanted "good" routes
- Goal #1: Routes that work!
 - State must not have any loops. Must not have any dead ends. Both of these.
- Goal #2: Routes that are in some way "good"
 - Commonly this is done by minimizing some "bad" quantity which we might call a cost
 - Hence least-cost routing!
- What did we (attempt to?) minimize in the routing activity we did last time?
 - Number of people who handled the envelope -- the *hop count*

- Last time, we said we wanted "good" routes
- Goal #1: Routes that work!
 - State must not have any loops. Must not have any dead ends. Both of these.
- Goal #2: Routes that are in some way "good"
 - Commonly this is done by *minimizing* some "bad" quantity which we might call a *cost*
 - Hence least-cost routing!
- What did we (attempt to?) minimize in the routing activity we did last time?
 - Number of people who handled the envelope -- the hop count
- What else might we minimize? (I mentioned some last time...)

- Last time, we said we wanted "good" routes
- Goal #1: Routes that work!
 - State must not have any loops. Must not have any dead ends. Both of these.
- Goal #2: Routes that are in some way "good"
 - Commonly this is done by *minimizing* some "bad" quantity which we might call a *cost*
 - Hence least-cost routing!
- What did we (attempt to?) minimize in the routing activity we did last time?
 - Number of people who handled the envelope -- the hop count
- What else might we minimize? (I mentioned some last time...)
 - o Price, propagation delay, distance, unreliability, others, ...
 - .. we can sort of just abstract this away

• So if we have a topology like this...

- So if we have a topology like this...
- .. we associate a cost with each edge

- So if we have a topology like this...
- .. we associate a cost with each edge
- .. and find path with the smallest sum

- So if we have a topology like this...
- .. we associate a cost with each edge
- .. and find path with the smallest sum
- .. you've probably seen this before!

- So if we have a topology like this...
- .. we associate a cost with each edge
- .. and find path with the smallest sum
- .. you've probably seen this before!
- In routing activity, every "edge" had cost of 1 -- gives you hop count
 - If costs not given, assume 1

- Where do these costs come from?
- Generally, local to router
 - o That is, routers know the costs of their attached links
- May be configured by an operator
- May be determined automatically
 - OSPF (an intradomain routing protocol) uses the link bandwidth
 - Higher bandwidth = smaller cost (gets highest-average-bandwidth paths)

- Least cost routes are an easy way to avoid loops
 - No sensible cost metric is minimized by traversing a loop
- Least cost routes are destination-based
 - Only depend on the destination
- They form a spanning tree
 - (Hence no loops)

- Least cost routes are an easy way to avoid loops
 - No sensible cost metric is minimized by traversing a loop
- Least cost routes are destination-based
 - Only depend on the destination
- They form a spanning tree
 - (Hence no loops)
- Terminology note:
 - When I say "shortest path", I mean "least cost path"
 - When weights are 1, these are the same thing -- the hop count
 - The text uses "shortest path" to always mean hop count

Questions?

Trivial and Static Routes

- There are a couple kinds of routes which...
 - o .. are uninteresting
 - .. you probably get "for free"
 - o .. I'll often ignore
- I'll call these "trivial routes" (not a standard term)

- There are a couple kinds of routes which...
 - o .. are uninteresting
 - .. you probably get "for free"
 - o .. I'll often ignore
- I'll call these "trivial routes" (not a standard term)
- #1: A route to yourself
 - With cost of zero!

A's Table	
Dst	NextHop, Cost
Α	None, 0

- There are a couple kinds of routes which...
 - o .. are uninteresting
 - .. you probably get "for free"
 - o .. I'll often ignore
- I'll call these "trivial routes" (not a standard term)
- #1: A route to yourself
 - With cost of zero!
- #2: If you have only one neighbor, a default route
 - Cost doesn't matter; it's the only way!

A's Table	
Dst	NextHop, Cost
Any	R1, 1

- There are a couple kinds of routes which...
 - o .. are uninteresting
 - .. you probably get "for free"
 - o .. I'll often ignore
- I'll call these "trivial routes" (not a standard term)
- #1: A route to yourself
 - With cost of zero!
- #2: If you have only one neighbor, a default route
 - Cost doesn't matter; it's the only way!
 - Hosts with multiple neighbors usually have one anyway
 - e.g., use WiFi by default if available; not cellular!

Static Routes

- Static routes are entered manually by an operator
- Why would you do this?

Static Routes

- Static routes are entered manually by an operator
- Why would you do this?
- Sometimes operator just knows what they want!

Static Routes

- Static routes are entered manually by an operator
- Why would you do this?
- Sometimes operator just knows what they want!
- More importantly:
 - Hosts don't generally participate in routing protocols
 - So how do the routers know where the hosts are?!
 - Operator adds static route on router next to host

	R1's Table		
	Dst	Port, Cost	
	Α	Port2, 1 (static)	
	В	Port1, 6	
	С	Port0, 1 (static)	

Static Routes

- Static routes are entered manually by an operator
- Why would you do this?
- Sometimes operator just knows what they want!
- More importantly:
 - Hosts don't generally participate in routing protocols
 - So how do the routers know where the hosts are?!
 - Operator adds static route on router next to host

	R1's Table		
	Dst	NextHop, Cost	
	Α	A (or Direct), 1	
	В	R5, 6	
\longrightarrow	С	C (or Direct), 1	

Questions?

Distance-Vector Protocols

Distance-Vector Routing Protocols

- Long history on the Internet (and its predecessor ARPANET in 1969)
- "Prototypical" D-V protocol is RIP (Routing Information Protocol)
 - Our discussion of D-V pretty similar
- Strong relationship to Bellman-Ford shortest path algorithm
 - Our in-class exercise last time was basically a version of Bellman-Ford
 - o ... sort of half way between normal Bellman-Ford and a useful routing protocol
 - .. we'll much closer today!
- The text has a much more formal/algorithmic write-up of distance-vector
 - You are welcome to read it!
- I am going to try to give you a sense of how it actually works.

Thinking back to the activity...

- You remembered:
 - Your distance to destination (lan) along the best path as far as you know (your magic number)

You remembered:

- Your distance to destination (lan) along the best path as far as you know (your magic number)
- Which neighbor is along that best path (the *nexthop*, AKA your best friend)

You remembered:

- Your distance to destination (lan) along the best path as far as you know (your magic number)
- Which neighbor is along that best path (the nexthop, AKA your best friend)
 - Maybe you didn't actually remember and figured it out later
 - But you could have remembered, right?

- You remembered:
 - Your distance to destination (lan) along the best path as far as you know (your magic number)
 - Which neighbor is along that best path (the *nexthop*, AKA your best friend)
 - Maybe you didn't actually remember and figured it out later
 - But you could have remembered, right?
- When you changed your mind about distance:
 - You told your neighbors (this might change their mind!)

- You remembered:
 - Your distance to destination (lan) along the best path as far as you know (your magic number)
 - Which neighbor is along that best path (the nexthop, AKA your best friend)
 - Maybe you didn't actually remember and figured it out later
 - But you could have remembered, right?
- When you changed your mind about distance:
 - You told your neighbors (this might change their mind!)
 - You added the additional distance to your neighbor (offering them your number plus one)
 - Could have done it the other way around, right?
 - Could have told you their number, and you added 1 and compared
 - And you could have added some other number, right?

- You remembered:
 - Your distance to destination (lan) along the best path as far as you know (your magic number)
 - Which neighbor is along that best path (the nexthop, AKA your best friend)
 - Maybe you didn't actually remember and figured it out later
 - But you could have remembered, right?
- When you changed your mind about distance:
 - You told your neighbors (this might change their mind!)
 - You added the additional distance to your neighbor (offering them your number plus one)
 - Could have done it the other way around, right?
 - Could have told you their number, and you added 1 and compared
 - And you could have added some other number, right?
- You could have done this for multiple destinations at once, right?
 - o Offer neighbors your best Ian number, Shriya number, Rafael number, ...

Routing

 Communicate with other routers to determine how to populate tables for forwarding

Forwarding

 Looks up packet's destination in table and sends packet to given neighbor

Routing

- Communicate with other routers to determine how to populate tables for forwarding
- Figuring out best friends by sharing magic numbers with neighbors

Forwarding

 Looks up packet's destination in table and sends packet to given neighbor

Routing

- Communicate with other routers to determine how to populate tables for forwarding
- Figuring out best friends by sharing magic numbers with neighbors

Forwarding

 Looks up packet's destination in table and sends packet to given neighbor

Routing

- Communicate with other routers to determine how to populate tables for forwarding
- Figuring out best friends by sharing magic numbers with neighbors

Forwarding

- Looks up packet's destination in table and sends packet to given neighbor
- Passing envelopes to our best friends

Serial Bellman-Ford algorithm...

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
  return distance, nexthop
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!
 - Nobody iterated over all the links
 - .. only between you and neighbors

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
  return distance, nexthop
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!
- .. and asynchronously
 - You and others doing all this work in no strict order order...

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!
- .. and asynchronously
- .. and what is this?!

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
  return distance, nexthop
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!
- .. and asynchronously
- .. our version self-terminated
 - Eventually could only offer same thing to neighbor -- we converged

```
def bellman_ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!
- .. and asynchronously
- .. our version self-terminated
- .. nobody knew the whole topology!

```
def bellman_ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
  return distance, nexthop
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!
- .. and asynchronously
- .. our version self-terminated
- .. nobody knew the whole topology!

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
      if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
  return distance, nexthop
```

.. nobody knew the whole topology!

```
Serial Bellman-F
                                                                 routers, links):
                                                                   = {}
                    Why not Dijkstra's algorithm instead?
We can see t
                                 Isn't it faster?
     Magic num
                                                                  TY
    Start with in
     Compare o
                                   Dijkstra's:
    Accept offe
                              O(|E| + |V| log |V|)
                                                                  ters)-1):
     Remember
                                                                  links:
                                                                  dist < distance[r2]:</pre>
                                Bellman-Ford:
.. but we did
                                                                  |istance[r1] + dist
                                  O(|E| \cdot |V|)
.. and asynch
.. our version sen
                                                              exthop
```

- Serial Bellman-Ford algorithm...
- We can see things we recognize:
 - Magic number & best friend
 - Start with infinity (except destination)
 - Compare offer to current
 - Accept offer
 - Remember best friend
- .. but we did it in parallel!
- .. and asynchronously
- .. our version self-terminated
- .. nobody knew the whole topology!

```
def bellman ford (dst, routers, links):
  distance = {}; nexthop = {}
  for each r in routers:
    distance[r] = INFINITY
    nexthop[r] = None
  distance[dst] = 0
  for in range(len(routers)-1):
    for (r1,r2,dist) in links:
     if distance[r1] + dist < distance[r2]:</pre>
        distance[r2] = distance[r1] + dist
        nexthop[r2] = r1
  return distance, nexthop
```

Putting together Distance-Vector

Your Table			
Dst	NextHop, Distance		
lan	Person in front of me, 14		

- Note: this can be used for forwarding too
 - (It has everything our tables from last time did *and* the distance)
- If a neighbor handed you an envelope (packet!), you'd hand to person in front

Putting together Distance-Vector

Your Table			
Dst	NextHop, Distance		
lan	Person in front of me, 14		

- Person to your left tells you "I can reach lan in 7"
 - They advertised a route with distance/cost of 7
- You think... well then I can reach lan in 7 + 1...
 - Your neighbor's distance to lan, plus your distance to the neighbor

Putting together Distance-Vector

Your Table				
Dst	NextHop, Distance			
lan	Person in front of me, 14 Person to my left, 8			

- Person to your left tells you "I can reach lan in 7"
 - They advertised a route with distance/cost of 7
- You think... well then I can reach lan in 7 + 1...
 - Your neighbor's distance to lan, plus your distance to the neighbor
 - Update your table with that!

Putting together Distance-Vector

Your Table	
Dst	NextHop, Distance
lan	Person in front of me, 14 Person to my left, 8

- Person in front tells you, "I can reach Rafael in 3"
 - o .. Rafael?

Putting together Distance-Vector

Your Table	
Dst	NextHop, Distance
lan	Person in front of me, 14 Person to my left, 8
Rafael	Person in front of me, 4

- Person in front tells you, "I can reach Rafael in 3"
 - Add a new row for Rafael with neighbor's distance to Rafael ...
 plus your distance to the neighbor (3 + 1)

Putting together Distance-Vector

Your Table	
Dst	NextHop, Distance
lan	Person in front of me, 14 Person to my left, 8
Rafael	Person in front of me, 4
Shriya	Person to my right, 16 Person behind, 13 Person behind, 12
Jichan	Person behind me, 9

- Keep "processing" updates / advertisements from neighbors...
- Questions?

Dst Nxt,Cost

Dst Nxt,Cost

Only R1 needs to know its own next hop!

Dst	Nxt,Cost
Α	R1,2

Dst	Nxt,Cost	
Α	R1,2	

Dst	Nxt,Cost
Α	R1,2

Dst	Nxt,Cost
Α	R1,2

Dst	Nxt,Cost
Α	R1,2

Dst Nxt,Cost
A R1,2

Questions?

What about multiple hosts?

An Exception to the Rule

- Our logic for when to update a route:
 - If destination not in table -- add to table
 - If destination...

- Our logic for when to update a route:
 - If destination not in table -- add to table
 - If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

- Our logic for when to update a route:
 - If destination not in table -- add to table
 - If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

- Our logic for when to update a route:
 - If destination not in table -- add to table
 - If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

- Our logic for when to update a route:
 - If destination not in table -- add to table
 - If current_route_distance > advertised_distance + distance_to_neighbor -- replace current
 - If advertiser is current_next_hop -- replace current

- Our logic for when to update a route:
 - If destination not in table -- add to table
 - If current_route_distance > advertised_distance + distance_to_neighbor -- replace current
 - If advertiser is current_next_hop -- replace current

Is it reliable?

Distance-Vector: Reliability

Distance-Vector: Reliability

Distance-Vector: Reliability

Distance-Vector: Reliability

Nxt,Cost Dst

Something b

Packet

Router timers aren't synchronized with each other!

Dst

Between offset timers, packet drops, triggered updates, advertisements can come in *many* orders

In following examples, I'll show things which *can* happen... ..doesn't mean they will always happen!

Α

I'll often ignore triggered updates because they complicate reasoning about behavior

t,Cost

Distance-Vector

Split Horizon
8
Counting to Infinity

R1 and R2 routes are pointing backwards?!

- Why would you advertise a path back to the person who advertised it to you?
- Telling them about your entry going through them:
 - Doesn't tell them anything new
 - Can mislead them into thinking you have independent path

- Why would you advertise a path back to the person who advertised it to you?
- Telling them about your entry going through them:
 - Doesn't tell them anything new
 - Can mislead them into thinking you have independent path
- Solution: if you are using a next-hop's path for some destination...
 - o ... don't advertise that destination to them!
 - Called "Split Horizon"

Route costs on R2/R3 count to infinity!

Solution: Pick a maximum value (e.g., 16) and stop there.

Distance-Vector

Can it handle new links?

Questions?

Break?

(Next up: Failed links)

Distance-Vector

Can it handle failed links?

Each route only has a finite *Time To Live* (e.g., 21 seconds).

Gets "recharged" by the periodic advertisements.

If you don't get a periodic update (e.g., 10 seconds)... expire & remove route.

Questions?

Attributions

Rick Astley Dallas.jpg, CC-BY-SA-4.0, https://commons.wikimedia.org/wiki/File:Rick_Astley_Dallas.jpg