
Routing #2

Today in Computing

● First patent for integrated circuits was filed 61 years ago today
by Jack Kilby of Texas Instruments

● Sort of the beginning of the computer chip!

● Bob Noyce invented the second IC shortly after…
○ His was made of silicon instead of germanium…
○ He later went on to co-found Intel…

● But still, it all goes back to Jack Kilby on February 6th of 1959

● And in today in Internet history...

Never gonna give you up

● Never gonna give you up

● Never gonna let you down

● Never gonna run around
and desert you

Today

● Kinds of routing, kinds of routers
○ Intradomain and Interdomain routing (IGPs and EGPs)
○ Internal and External routers

● “Least-cost” routing
● Trivial and static routes
● Distance-Vector in depth

Kinds of routing, kinds of routers

Interdomain and Intradomain Routing

● The Internet does not work by having a single giant routing protocol

● The Internet is a network of networks
○ The best way to route on one may not be the best way on another (why not?)
○ Networks differ!

■ Physical size, number of hosts, number of routers, bandwidth, latency, failure rate,
topology (densely vs. sparsely connected, etc.), support staff size, when built, …

● So…
○ Let individual networks choose how to route inside their network (intradomain)
○ .. all networks agree on how to route between themselves and other networks (interdomain)

Interdomain and Intradomain Routing

● Intradomain routing
○ More or less means routing within a single network (technically an “Autonomous System”)
○ Protocols used are often called IGPs or Interior Gateway Protocols

■ A number are actively used today

Interdomain and Intradomain Routing

● Intradomain routing
○ More or less means routing within a single network (technically an “Autonomous System”)
○ Protocols used are often called IGPs or Interior Gateway Protocols

■ A number are actively used today

● Interdomain routing
○ Routing between networks (ASes)
○ The routing glue which binds many networks into the Internet!
○ Protocols used are called EGPs or Exterior Gateway Protocols

■ Only one is ever used at a time! All ASes agree!
■ Internet has used BGP since the mid-1990s

Interdomain and Intradomain Routing

● Intradomain routing
○ More or less means routing within a single network (technically an “Autonomous System”)
○ Protocols used are often called IGPs or Interior Gateway Protocols

■ A number are actively used today

● Interdomain routing
○ Routing between networks (ASes)
○ The routing glue which binds many networks into the Internet!
○ Protocols used are called EGPs or Exterior Gateway Protocols

■ Only one is ever used at a time! All ASes agree!
■ Internet has used BGP since the mid-1990s

● Much of discussion this & next week is very general (true of any routing)
○ .. but focus is on intradomain routing
○ .. we’ll talk about BGP specifically later (week 7?)

Interdomain and Intradomain Routing

University

Cloud Provider

National ISP

Regional
ISP

Four domains (different networks)
and the links and routers

connecting them

These routers all run the same
EGP routing protocol: BGP

Interdomain and Intradomain Routing

University

Cloud Provider

National ISP

Regional
ISP

The routers within the domains
can choose their own IGP routing

protocol

Four domains (different networks)
and the links and routers

connecting them

These routers all run the same
EGP routing protocol: BGP

Interdomain and Intradomain Routing

University

Cloud Provider

National ISP

Regional
ISP

The routers within the domains
can choose their own IGP routing

protocol

Four domains (different networks)
and the links and routers

connecting them

These routers all run the same
EGP routing protocol: BGP

The routers within the
domains can choose

their own IGP

Internal router

Border router

Questions?

Least-Cost Routing

Least-Cost Routing

● Last time, we said we wanted “good” routes

Least-Cost Routing

● Last time, we said we wanted “good” routes

● Goal #1: Routes that work!
○ State must not have any loops. Must not have any dead ends. Both of these.

Least-Cost Routing

● Last time, we said we wanted “good” routes

● Goal #1: Routes that work!
○ State must not have any loops. Must not have any dead ends. Both of these.

● Goal #2: Routes that are in some way “good”
○ Commonly this is done by minimizing some “bad” quantity which we might call a cost
○ Hence least-cost routing!

Least-Cost Routing

● Last time, we said we wanted “good” routes

● Goal #1: Routes that work!
○ State must not have any loops. Must not have any dead ends. Both of these.

● Goal #2: Routes that are in some way “good”
○ Commonly this is done by minimizing some “bad” quantity which we might call a cost
○ Hence least-cost routing!

● What did we (attempt to?) minimize in the routing activity we did last time?

Least-Cost Routing

● Last time, we said we wanted “good” routes

● Goal #1: Routes that work!
○ State must not have any loops. Must not have any dead ends. Both of these.

● Goal #2: Routes that are in some way “good”
○ Commonly this is done by minimizing some “bad” quantity which we might call a cost
○ Hence least-cost routing!

● What did we (attempt to?) minimize in the routing activity we did last time?
○ Number of people who handled the envelope -- the hop count

Least-Cost Routing

● Last time, we said we wanted “good” routes

● Goal #1: Routes that work!
○ State must not have any loops. Must not have any dead ends. Both of these.

● Goal #2: Routes that are in some way “good”
○ Commonly this is done by minimizing some “bad” quantity which we might call a cost
○ Hence least-cost routing!

● What did we (attempt to?) minimize in the routing activity we did last time?
○ Number of people who handled the envelope -- the hop count

● What else might we minimize? (I mentioned some last time…)

Least-Cost Routing

● Last time, we said we wanted “good” routes

● Goal #1: Routes that work!
○ State must not have any loops. Must not have any dead ends. Both of these.

● Goal #2: Routes that are in some way “good”
○ Commonly this is done by minimizing some “bad” quantity which we might call a cost
○ Hence least-cost routing!

● What did we (attempt to?) minimize in the routing activity we did last time?
○ Number of people who handled the envelope -- the hop count

● What else might we minimize? (I mentioned some last time…)
○ Price, propagation delay, distance, unreliability, others, …
○ .. we can sort of just abstract this away

Least-Cost Routing

R2

R5 R3

R4

R1
● So if we have a topology like this…

1

1

Least-Cost Routing

R2

R5 R3

R4

R1

2

10

7 1

● So if we have a topology like this…
● .. we associate a cost with each edge

1

1

Least-Cost Routing

R2

R5 R3

R4

R1

2

10

7 1

● So if we have a topology like this…
● .. we associate a cost with each edge
● .. and find path with the smallest sum

R5→R3 Cost: 12

R5→R3 Cost: 5

1

1

Least-Cost Routing

R2

R5 R3

R4

R1

2

10

7 1

● So if we have a topology like this…
● .. we associate a cost with each edge
● .. and find path with the smallest sum

● .. you’ve probably seen this before!

R5→R3 Cost: 12

R5→R3 Cost: 5

1

1

Least-Cost Routing

R2

R5 R3

R4

R1

2

10

7 1

● So if we have a topology like this…
● .. we associate a cost with each edge
● .. and find path with the smallest sum

● .. you’ve probably seen this before!

● In routing activity, every “edge” had
cost of 1 -- gives you hop count

○ If costs not given, assume 1

R5→R3 Cost: 12

R5→R3 Cost: 5

Least-Cost Routing

● Where do these costs come from?

● Generally, local to router
○ That is, routers know the costs of their attached links

● May be configured by an operator

● May be determined automatically
○ OSPF (an intradomain routing protocol) uses the link bandwidth
○ Higher bandwidth = smaller cost (gets highest-average-bandwidth paths)

Least-Cost Routing

● Least cost routes are an easy way to avoid loops
○ No sensible cost metric is minimized by traversing a loop

● Least cost routes are destination-based
○ Only depend on the destination

● They form a spanning tree
○ (Hence no loops)

Least-Cost Routing

● Least cost routes are an easy way to avoid loops
○ No sensible cost metric is minimized by traversing a loop

● Least cost routes are destination-based
○ Only depend on the destination

● They form a spanning tree
○ (Hence no loops)

● Terminology note:
○ When I say “shortest path”, I mean “least cost path”
○ When weights are 1, these are the same thing -- the hop count
○ The text uses “shortest path” to always mean hop count

Questions?

Trivial and Static Routes

Trivial Routes

● There are a couple kinds of routes which…
○ .. are uninteresting
○ .. you probably get “for free”
○ .. I’ll often ignore

● I’ll call these “trivial routes” (not a standard term)

Trivial Routes

● There are a couple kinds of routes which…
○ .. are uninteresting
○ .. you probably get “for free”
○ .. I’ll often ignore

● I’ll call these “trivial routes” (not a standard term)

● #1: A route to yourself
○ With cost of zero!

A

A’s Table

Dst NextHop, Cost

A None, 0

...

Trivial Routes

● There are a couple kinds of routes which…
○ .. are uninteresting
○ .. you probably get “for free”
○ .. I’ll often ignore

● I’ll call these “trivial routes” (not a standard term)

● #1: A route to yourself
○ With cost of zero!

● #2: If you have only one neighbor, a default route
○ Cost doesn’t matter; it’s the only way!

A R1

B

C

A’s Table

Dst NextHop, Cost

Any R1, 1

Trivial Routes

● There are a couple kinds of routes which…
○ .. are uninteresting
○ .. you probably get “for free”
○ .. I’ll often ignore

● I’ll call these “trivial routes” (not a standard term)

● #1: A route to yourself
○ With cost of zero!

● #2: If you have only one neighbor, a default route
○ Cost doesn’t matter; it’s the only way!
○ Hosts with multiple neighbors usually have one anyway

■ e.g., use WiFi by default if available; not cellular!

A R1

B

C

A’s Table

Dst NextHop, Cost

Any R1, 1

Static Routes

● Static routes are entered manually by an operator
● Why would you do this?

Static Routes

● Static routes are entered manually by an operator
● Why would you do this?

● Sometimes operator just knows what they want!

Static Routes

● Static routes are entered manually by an operator
● Why would you do this?

● Sometimes operator just knows what they want!

● More importantly:
○ Hosts don’t generally participate in routing protocols
○ So how do the routers know where the hosts are?!

■ Operator adds static route on router next to host

A R1

C

R1’s Table

Dst Port, Cost

A Port2, 1 (static)

B Port1, 6

C Port0, 1 (static)

...

0
12

Static Routes

● Static routes are entered manually by an operator
● Why would you do this?

● Sometimes operator just knows what they want!

● More importantly:
○ Hosts don’t generally participate in routing protocols
○ So how do the routers know where the hosts are?!

■ Operator adds static route on router next to host

A R1

C

R1’s Table

Dst NextHop, Cost

A A (or Direct), 1

B R5, 6

C C (or Direct), 1

...

Questions?

Distance-Vector Protocols

Distance-Vector Routing Protocols

● Long history on the Internet (and its predecessor ARPANET in 1969)
● “Prototypical” D-V protocol is RIP (Routing Information Protocol)

○ Our discussion of D-V pretty similar

● Strong relationship to Bellman-Ford shortest path algorithm
○ Our in-class exercise last time was basically a version of Bellman-Ford
○ .. sort of half way between normal Bellman-Ford and a useful routing protocol
○ .. we’ll much closer today!

● The text has a much more formal/algorithmic write-up of distance-vector
○ You are welcome to read it!

● I am going to try to give you a sense of how it actually works.

Thinking back to the activity...

Thinking back to the activity (and making changes)...

Thinking back to the activity (and making changes)...

● You remembered:
○ Your distance to destination (Ian) along the best path as far as you know (your magic number)

Thinking back to the activity (and making changes)...

● You remembered:
○ Your distance to destination (Ian) along the best path as far as you know (your magic number)
○ Which neighbor is along that best path (the nexthop, AKA your best friend)

Thinking back to the activity (and making changes)...

● You remembered:
○ Your distance to destination (Ian) along the best path as far as you know (your magic number)
○ Which neighbor is along that best path (the nexthop, AKA your best friend)

■ Maybe you didn’t actually remember and figured it out later
■ But you could have remembered, right?

Thinking back to the activity (and making changes)...

● You remembered:
○ Your distance to destination (Ian) along the best path as far as you know (your magic number)
○ Which neighbor is along that best path (the nexthop, AKA your best friend)

■ Maybe you didn’t actually remember and figured it out later
■ But you could have remembered, right?

● When you changed your mind about distance:
○ You told your neighbors (this might change their mind!)

Thinking back to the activity (and making changes)...

● You remembered:
○ Your distance to destination (Ian) along the best path as far as you know (your magic number)
○ Which neighbor is along that best path (the nexthop, AKA your best friend)

■ Maybe you didn’t actually remember and figured it out later
■ But you could have remembered, right?

● When you changed your mind about distance:
○ You told your neighbors (this might change their mind!)

■ You added the additional distance to your neighbor (offering them your number plus one)
● Could have done it the other way around, right?

○ Could have told you their number, and you added 1 and compared
● And you could have added some other number, right?

Thinking back to the activity (and making changes)...

● You remembered:
○ Your distance to destination (Ian) along the best path as far as you know (your magic number)
○ Which neighbor is along that best path (the nexthop, AKA your best friend)

■ Maybe you didn’t actually remember and figured it out later
■ But you could have remembered, right?

● When you changed your mind about distance:
○ You told your neighbors (this might change their mind!)

■ You added the additional distance to your neighbor (offering them your number plus one)
● Could have done it the other way around, right?

○ Could have told you their number, and you added 1 and compared
● And you could have added some other number, right?

● You could have done this for multiple destinations at once, right?
○ Offer neighbors your best Ian number, Shriya number, Rafael number, ...

Routing

● Communicate with other routers to determine
how to populate tables for forwarding

Forwarding

● Looks up packet’s destination in table and
sends packet to given neighbor

An aside: Routing vs. Forwarding

Routing

● Communicate with other routers to determine
how to populate tables for forwarding

● Figuring out best friends by sharing magic
numbers with neighbors

Forwarding

● Looks up packet’s destination in table and
sends packet to given neighbor

An aside: Routing vs. Forwarding

Routing

● Communicate with other routers to determine
how to populate tables for forwarding

● Figuring out best friends by sharing magic
numbers with neighbors

Forwarding

● Looks up packet’s destination in table and
sends packet to given neighbor

An aside: Routing vs. Forwarding

?

Routing

● Communicate with other routers to determine
how to populate tables for forwarding

● Figuring out best friends by sharing magic
numbers with neighbors

Forwarding

● Looks up packet’s destination in table and
sends packet to given neighbor

● Passing envelopes to our best friends

An aside: Routing vs. Forwarding

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
○ Nobody iterated over all the links
○ .. only between you and neighbors

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
● .. and asynchronously

○ You and others doing all this work in no
strict order order...

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
● .. and asynchronously
● .. and what is this?!

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
● .. and asynchronously
● .. our version self-terminated

○ Eventually could only offer same thing
to neighbor -- we converged

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
● .. and asynchronously
● .. our version self-terminated
● .. nobody knew the whole topology!

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
● .. and asynchronously
● .. our version self-terminated
● .. nobody knew the whole topology!

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
● .. and asynchronously
● .. our version self-terminated
● .. nobody knew the whole topology!

Why not Dijkstra’s algorithm instead?
Isn’t it faster?

Dijkstra’s:
O(|E| + |V| log |V|)

Bellman-Ford:
O(|E| · |V|)

In-Class Activity and Bellman-Ford

def bellman_ford (dst, routers, links):
 distance = {}; nexthop = {}

 for each r in routers:
 distance[r] = INFINITY
 nexthop[r] = None
 distance[dst] = 0

 for _ in range(len(routers)-1):
 for (r1,r2,dist) in links:
 if distance[r1] + dist < distance[r2]:
 distance[r2] = distance[r1] + dist
 nexthop[r2] = r1

 return distance, nexthop

● Serial Bellman-Ford algorithm…

● We can see things we recognize:
○ Magic number & best friend
○ Start with infinity (except destination)
○ Compare offer to current
○ Accept offer
○ Remember best friend

● .. but we did it in parallel!
● .. and asynchronously
● .. our version self-terminated
● .. nobody knew the whole topology!

Putting together Distance-Vector

● Note: this can be used for forwarding too
○ (It has everything our tables from last time did and the distance)

● If a neighbor handed you an envelope (packet!), you’d hand to person in front

Your Table

Dst NextHop, Distance

Ian Person in front of me, 14

Putting together Distance-Vector

● Person to your left tells you “I can reach Ian in 7”
○ They advertised a route with distance/cost of 7

● You think… well then I can reach Ian in 7 + 1…
○ Your neighbor’s distance to Ian, plus your distance to the neighbor

Your Table

Dst NextHop, Distance

Ian Person in front of me, 14

Putting together Distance-Vector

● Person to your left tells you “I can reach Ian in 7”
○ They advertised a route with distance/cost of 7

● You think… well then I can reach Ian in 7 + 1…
○ Your neighbor’s distance to Ian, plus your distance to the neighbor
○ Update your table with that!

Your Table

Dst NextHop, Distance

Ian Person in front of me, 14 Person to my left, 8

Putting together Distance-Vector

● Person in front tells you, “I can reach Rafael in 3”
○ .. Rafael?

Your Table

Dst NextHop, Distance

Ian Person in front of me, 14 Person to my left, 8

Putting together Distance-Vector

● Person in front tells you, “I can reach Rafael in 3”
○ Add a new row for Rafael with neighbor’s distance to Rafael ..

plus your distance to the neighbor (3 + 1)

Your Table

Dst NextHop, Distance

Ian Person in front of me, 14 Person to my left, 8

Rafael Person in front of me, 4

Putting together Distance-Vector

● Keep “processing” updates / advertisements from neighbors…

● Questions?

Your Table

Dst NextHop, Distance

Ian Person in front of me, 14 Person to my left, 8

Rafael Person in front of me, 4

Shriya Person to my right, 16 Person behind, 13 Person behind, 12

Jichan Person behind me, 9

Distance-Vector

R1A R3

Dst Nxt,Cost Dst Nxt,Cost

R2

Dst Nxt,Cost

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

Only R1 needs to know its own next hop!

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

No “A” route in table!

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A

R1 A:1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1

R1 A:1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R1 A:1

+1 for the link to R1

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

● If your neighbor offers you a lower number…
○ Take it! It’s now your magic number
○ Immediately offer your magic number

plus one to all your neighborsI doubt you did this!

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

2+1 = 3

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

2+1 = 3
Worse than current route.
Leave current route alone.

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

R2 A:2 R2 A:2

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

R3 A:3

3+1 = 4
Worse than current route.
Leave current route alone.

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

We’ve converged! 🥳

Questions?

Distance-Vector

What about multiple hosts?

Distance-Vector

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

B Direct,1

R2

Dst Nxt,Cost

A R1,2

B
R3 A:3

R3 B:1

Distance-Vector

An Exception to the Rule

Distance-Vector: An Exception to the Rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If destination...

R8

Dst Nxt,Cost

F R5,6

R11R5

Distance-Vector: An Exception to the Rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

R8

Dst Nxt,Cost

F R5,6

R11R5

Distance-Vector: An Exception to the Rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

R8

Dst Nxt,Cost

F R5,6

R11R5

R11 F:9

Distance-Vector: An Exception to the Rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current

R8

Dst Nxt,Cost

F R5,6

R11R5

R11 F:9

R5 F:9

Distance-Vector: An Exception to the Rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current
○ If advertiser is current_next_hop -- replace current

R8

Dst Nxt,Cost

F R5,6

R11R5

R11 F:9

R5 F:9

Distance-Vector: An Exception to the Rule

● Our logic for when to update a route:
○ If destination not in table -- add to table
○ If current_route_distance > advertised_distance + distance_to_neighbor -- replace current
○ If advertiser is current_next_hop -- replace current

R8

Dst Nxt,Cost

F R5,613

R11R5

R11 F:9

R5 F:12

Distance-Vector

Is it reliable?

Distance-Vector: Reliability

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1

Something bad happened!
Packet got dropped!

Distance-Vector: Reliability

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1 🔥 ☠

Distance-Vector: Reliability

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1 🔥 ☠

Something bad happened!
Packet got dropped!

Super simple reliability
Resend advertisements every X seconds. (X=advertisement interval)

This should always work eventually (assuming link works at all).
Sending on change (triggered updates) acts as an optimization.

Distance-Vector: Reliability

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

R2

Dst Nxt,Cost

R1 A:1 🔥 ☠

Something bad happened!
Packet got dropped!● Router timers aren’t synchronized with each other!

● Between offset timers, packet drops, triggered updates,
advertisements can come in many orders

● In following examples, I’ll show things which can happen…
..doesn’t mean they will always happen!

● I’ll often ignore triggered updates because they complicate
reasoning about behavior

Distance-Vector

Split Horizon
&

Counting to Infinity

Distance-Vector: Split Horizon

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

Dst Nxt,Cost

A R1,2

R2 A:2

Distance-Vector: Split Horizon

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

R2 A:2

Distance-Vector: Split Horizon

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

R3 A:3

Distance-Vector: Split Horizon

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

Distance-Vector: Split Horizon

R1A R3R2

Dst Nxt,Cost Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

Distance-Vector: Split Horizon

R1A R3R2

Dst Nxt,Cost Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R3,4

R3 A:3

Distance-Vector: Split Horizon

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R3,4

R2 A:4

R1 and R2 routes are pointing
backwards?!

Distance-Vector: Split Horizon

● Why would you advertise a path back to the person who advertised it to you?

● Telling them about your entry going through them:
○ Doesn’t tell them anything new
○ Can mislead them into thinking you have independent path

Distance-Vector: Split Horizon

● Why would you advertise a path back to the person who advertised it to you?

● Telling them about your entry going through them:
○ Doesn’t tell them anything new
○ Can mislead them into thinking you have independent path

● Solution: if you are using a next-hop’s path for some destination…
○ .. don’t advertise that destination to them!
○ Called “Split Horizon”

Distance-Vector: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R3,4

R2 A:4

Distance-Vector: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,3 5

Dst Nxt,Cost

A R3,4

R2 A:4

Distance-Vector: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R3,4 6

R3 A:5

Distance-Vector: Counting to Infinity

R1A R3R2

Dst Nxt,Cost

A R2,5

Dst Nxt,Cost

A R2,5 7

Dst Nxt,Cost

A R3,6

R2 A:6

Route costs on R2/R3 count to infinity!
Solution: Pick a maximum value (e.g., 16) and stop there.

Distance-Vector

Can it handle new links?

Distance-Vector: Dealing with new links

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

Distance-Vector: Dealing with new links

R1A R3R2

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

Distance-Vector: Dealing with new links

R1A R3R2
R1 A:1 1+1 < 3!

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

Dst Nxt,Cost

A R1,2

Distance-Vector: Dealing with new links

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3 R1,2

R2

Dst Nxt,Cost

A R1,2
R1 A:1 1+1 < 3!

Questions?

Break?
(Next up: Failed links)

Distance-Vector

Can it handle failed links?

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

4

R1 A:1 1+4 > 3

 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

4

 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost

A Direct,1

Dst Nxt,Cost

A R2,3

R2

Dst Nxt,Cost

A R1,2

4

 🔥 🔥 🔥 🔥

Had been getting A:1
advertisement from R1

every 10 seconds…
but not anymore!

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

 🔥 🔥 🔥 🔥

Dst Nxt,Cost TTL

A R2,3

Dst Nxt,Cost TTL

A R1,2

Each route only has a finite Time To Live (e.g., 21 seconds).
Gets “recharged” by the periodic advertisements.

If you don’t get a periodic update (e.g., 10 seconds)… expire & remove route.

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

Static routes
don’t expire

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

R1 A:1

t=0

R1 A:1

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 21

Dst Nxt,Cost TTL

A R1,2 21

R1 A:1

t=0

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 16

Dst Nxt,Cost TTL

A R1,2 16

R2 A:2

t=5

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 R2,3 16 21

Dst Nxt,Cost TTL

A R1,2 16

R2 A:2

t=5

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11

R1 A:1

t=10

R1 A:1

Ignored

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11

R1 A:1

t=10

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

R1 A:1

t=10

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

t=10

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

t=10

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 11 21

Dst Nxt,Cost TTL

A R1,2 16

t=15

 🔥 🔥 R2 A:2 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11

t=20

R1 A:1
 🔥 🔥 🔥 🔥R1 A:1

 🔥

Ignored
again

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16 21

Dst Nxt,Cost TTL

A R1,2 6

R2 A:2

t=25

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 1

t=30

R1 A:1
 🔥 🔥 🔥 🔥R1 A:1

 🔥

Ignored
again

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 0

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

t=46

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

t=50

R1 A:1
 🔥 🔥 🔥 🔥

Accepted this
time!

R1 A:1
 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 21

Dst Nxt,Cost TTL

t=50

R1 A:1
 🔥 🔥 🔥 🔥

Accepted this
time!

R1 A:1
 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 19

Dst Nxt,Cost TTL

t=52

R3 A:5
 🔥 🔥 🔥 🔥

Ignored

R3 A:5

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 19

Dst Nxt,Cost TTL

A R3,6 21

t=52

 🔥 🔥 🔥 🔥

Questions?

Attributions

 Rick Astley Dallas.jpg, CC-BY-SA-4.0, https://commons.wikimedia.org/wiki/File:Rick_Astley_Dallas.jpg

