Routing #3

Today

A look at some self-test questions

- Finishing up Distance-Vector protocols
- Link-State protocols

Learning Switches

Self-Test Questions

- Routing ensures reliable delivery of packets between end hosts.
- True (33%)
- False (67%)

- If you have valid routing state, does that mean the network will never drop any packets?
- Yes
- No (90%+)
- Routing ensures reliable delivery of packets between end hosts.
- True (33%)
- False (67%)

If packets can still get dropped, then the network isn't ensuring they're reliably delivered.

Routing may be necessary, but it's not sufficient!

- Does the "no loops, no dead ends" theorem only hold true for destinationbased forwarding?
- Yes (38%)
- No (63%)

Lecture 5

"Same basic *no loops or dead ends* condition generalizes to *at least** any other system that does deterministic forwarding based on fixed packet headers (that is, it's not *limited* to destination-based routing)"

- Routing occurs when a data packet arrives at a router and is sent out another port.
 - True (46%)
 - False (54%)

- Routing occurs when a data packet arrives at a router and is sent out another port.
 - True (46%)
 - False (54%)

- Forwarding occurs when a data packet arrives at a router and is sent out another port.
 - Routing determines which neighbor to forward to (i.e. which port to forward out of).

Questions?

Finishing up D-V

From B-F to D-V

- We refined our update rule
- We resolved some wacky problems with split horizon
- We ensured that we eventually converge instead of counting to infinity
- We made it robust to packet drops/ordering by advertising periodically
- We saw that we can adapt to new links easily
- We can identify failed links and dead routes by missing advertisements

Distance-Vector

Can it handle failed links?

Questions?

Distance-Vector

Evidence of Absence (of Routes) (Poisoning)

- Key idea:
 - Instead of just not advertising a route
 - .. actively advertise that you don't have a route
- Do this by advertising an impossibly high cost
 - A "poison" route
- This route should propagate like other routes, poisoning the entry on any other router that was using it
- Can be much faster than waiting for timeouts!

- And this doesn't just work for timed advertisements...
- If you get a poison advertisement and it changes your table...
 - Will trigger you to send poison
 - Propagates dead routes as fast as they can reach and be processed by neighbor!
- .. can be much, much faster than waiting for timeouts!

Besides expired routes, where else did we not advertise something?

- Besides expired routes, where else did we not advertise something?
 - Split horizon!
- In split horizon, we had a route but chose not to advertise
 - Don't want to advertise a route back to router that advertised it to us!
 - Can lead to sending things backwards (or even looping)

- Besides expired routes, where else did we not advertise something?
 - Split horizon!
- In split horizon, we had a route but chose not to advertise
 - Don't want to advertise a route back to router that advertised it to us!
 - Can lead to sending things backwards (or even looping)
- Instead of not advertising in this case... advertise infinite cost
 - We call this poison reverse
 - Same exact idea as split horizon, but more aggressive

With split horizon, loopy state exists until expiration

With poison reverse, loopy state exists until next advertisement

Questions?

- Poisoning and poison reverse...
- In both cases, without poisoning, you would have not sent a route
- Instead, send an explicitly terrible route (any other route will be better)
 - (And never forward using these terrible infinite-length routes.)

Distance-Vector

More events to trigger on

Distance-Vector: More triggers

- We know that our table changing should trigger us to send an update
- Can be useful to handle other events too...

Distance-Vector: More triggers

- We know that our table changing should trigger us to send an update
- Can be useful to handle other events too...
- Sometimes we can detect when a link becomes available
 - Immediately send new neighbor advertisements
 - No need to wait for timer

Distance-Vector: More triggers

- We know that our table changing should trigger us to send an update
- Can be useful to handle other events too...
- Sometimes we can detect when a link becomes available
 - Immediately send new neighbor advertisements
 - No need to wait for timer
- Sometimes we can detect when a link fails
 - Immediately poison all table entries using that link
 - .. if there are any, advertise the newly poisoned ones!

Distance-Vector

Summing up...

From B-F to D-V

- We refined our update rule
- We resolved some wacky problems with split horizon / poison reverse
- We ensured that we eventually converge instead of counting to infinity
- We made it robust to packet drops/ordering by advertising periodically
- We saw that we can adapt to new links easily
- We can identify failed links and dead routes by missing advertisements
- We can converge faster by explicitly signaling the absence of a route
- We can adapt more quickly by advertising when "triggered" by events
- This is now a pretty good routing protocol!

Questions?

Link-State Routing

Link-State Routing

- Another major class of routing protocols: Link-State routing
- Newer than Distance-Vector
- Very common as an Interior Gateway Protocol!
- Two major examples:
 - IS-IS (Intermediate System to Intermediate System)
 - OSPF (Open Shortest Path First)
 - Used for Berkeley's network
- Works very differently than Distance-Vector!
- Let's explore Link-State and sketch out a design...

Distance-Vector vs. Link-State

- Distance-Vector
 - Global computation (it's distributed across all nodes)
 - using local data (from just itself and its neighbors)

Distance-Vector vs. Link-State

- Distance-Vector
 - Global computation (it's distributed across all nodes)
 - using local data (from just itself and its neighbors)
- Link-State
 - Local computation
 - using global data (from all parts of the network)

Distance-Vector vs. Link-State

- Distance-Vector
 - Global computation (it's distributed across all nodes)
 - using local data (from just itself and its neighbors)
- Link-State
 - Local computation
 - using global data (from all parts of the network)
- What does this mean?
 - Hopefully the D-V part makes sense to you!
 - Let's look at the L-S part...

Link-State

- A router locally computes routing state...
- .. using "global data (from all parts of the network)"
- What's this "global data"?
 - The state of every link (hence: link-state)
 - Is it up?
 - What is its cost?

Link-State: Global Data

- Information about the state of links:
 - Link R1-R2 exists and has cost 1
 - Link R1-R3 exists and has cost 10
 - Link R4-R5 exists and has cost 7
 - Link R1-R4 exists and has cost 2
 - Link R2-R5 exists and has cost 1
 - Link R3-R4 exists and has cost 1
- What are we missing info about?
 - Destinations!

Link-State: Global Data

- Information about the state of links:
 - Link R1-R2 exists and has cost 1
 - Link R1-R3 exists and has cost 10
 - Link R4-R5 exists and has cost 7
 - Link R1-R4 exists and has cost 2
 - Link R2-R5 exists and has cost 1
 - Link R3-R4 exists and has cost 1
- Information about destinations:
 - R3 has destination A
 - R4 has destination B
- .. we can use this info to build complete map (global view) of topology

Link-State: Global Data

- If router had global view, could easily compute paths
- Imagine you're R5
- What's the best path to A?
 - R5,R2,R1,R4,R3,A
- Which of that is useful to R5?
 - Only the R2 part!

R5's Table	
Dst	Nxt
A	R2

- Every router:
 - Gets the state of all links and location of all destinations

Uses that global information to build full graph

Finds paths from itself to every destination on graph

- Every router:
 - Gets the state of all links and location of all destinations
 - How?! We'll come back to this in a second...
 - Uses that global information to build full graph

Finds paths from itself to every destination on graph

- Every router:
 - Gets the state of all links and location of all destinations
 - How?! We'll come back to this in a second...
 - Uses that global information to build full graph

Finds paths from itself to every destination on graph

- Every router:
 - Gets the state of all links and location of all destinations
 - How?! We'll come back to this in a second...
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph

- Every router:
 - Gets the state of all links and location of all destinations
 - How?! We'll come back to this in a second...
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph

Link-State Routing: How to Find Paths?

- Each router has the complete topology; can basically do it however it wants!
 - For least-cost routes, this is called Single Source Shortest Path (SSSP)
- Some obvious algorit
 - Bellman-Ford all
 - Dijkstra's algorit
- Can you do better?
 - Breadth First Se
 - Dynamic shortest pain algorithms (various)
 - Approximate shortest path algorithms (various)
 - Parallel SSSP algorithms (various)
 - ?

But there's nothing that says you *need* to do least-cost routing!

(But beware the next point...)

- Every router:
 - Gets the state of all links and location of all destinations
 - How?! We'll come back to this in a second...
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph
 - Using any pathfinding algorithm (e.g., Dijkstra's)
 - Uses the second hop in those paths to populate its forwarding table

- Every router:
 - Gets the state of all links and location of all destinations
 - How?! We'll come back to this in a second...
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph
 - Using any pathfinding algorithm (e.g., Dijkstra's)
 - Uses the second hop in those paths to populate its forwarding table

- Important: Remember, each router can only influence its own next hop!
- Other routers must be coming up with paths which are "compatible"

R5's Table		
Dst	Nxt	
А	R2	

- Important: Remember, each router can only influence its own next hop!
- Other routers must be coming up with paths which are "compatible"
- Pretty easy for least-cost routing if:
 - Minimizing the same cost
 - All costs are > 0

R5's Table	
Dst	Nxt
А	R2

- Important: Remember, each router can only influence its own next hop!
- Other routers must be coming up with paths which are "compatible"
- Pretty easy for least-cost routing if:
 - Minimizing the same cost
 - All costs are > 0
 - All routers agree on topology!

R5's Table	
Dst	Nxt
Α	R2

- Important: Remember, each router can only influence its own next hop!
- Other routers must be coming up with paths which are "compatible"
- Pretty easy for least-cost routing if:
 - Minimizing the same cost
 - All costs are > 0
 - All routers agree on topology!
- Given all those, don't even need to implement same exact algorithm (e.g., break ties exactly the same)

- Counterexample: R2 and R5 both compute apparently-feasible paths...
- .. but they don't work together!
- (Packets loop between R2 and R5)

- Every router:
 - Gets the state of all links and location of all destinations
 - How?! We'll come back to this in a second...
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph
 - Using any pathfinding algorithm (e.g., Dijkstra's)
 - Uses the second hop in those paths to populate its forwarding table
 - If every router chooses compatible paths, we're done!

- Every router:
 - Gets the state of all links and location of all destinations
 - ...
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph
 - Using any pathfinding algorithm (e.g., Dijkstra's)
 - Uses the second hop in those paths to populate its forwarding table
 - If every router chooses compatible paths, we're done!

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - Tell everyone about its neighbors (i.e., its links to them)
 - Tell everyone else about any adjacent destinations

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - Tell everyone about its neighbors (i.e., its links to them)
 - Tell everyone else about any adjacent destinations

Link-State: Finding Your Neighbors

- How does anyone ever know who their neighbors are?
 - Introduce yourselves!
- Routers periodically send hello messages to neighbors
 - If a neighbor goes quiet, eventually assume they're gone

My neighbors: Ada

Hi, I'm Ada.

My neighbors: Charles & Margaret

Hi, I'm Margaret.

My neighbors: Ada

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - Tell everyone else about any adjacent destinations

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - Tell everyone else about any adjacent destinations

- Exchanging hellos tells you who your neighbors are (local info)
- But we need to know who everyone's neighbors are!
- Solution is called flooding
- Strawman solution:
 - When local information (e.g., neighbors) changes, send to all neighbors
 - When you receive info packet from neighbor, send to all other neighbors

- Exchanging hellos tells you who your neighbors are (local info)
- But we need to know who everyone's neighbors are!
- Solution is called flooding
- Strawman solution:
 - When local information (e.g., neighbors) changes, send to all neighbors
 - When you receive info packet from neighbor, send to all other neighbors
 - Does this always work?

Note that you can easily recreate this demo in the Project 1 simulator using the example "hub" switch.

Just set up the shown topology and send a ping.

Then add a link between R2 and R6.

Then add a link between R3 and R4.

(Or use any other topology with one or two loops!)

- Naive solution doesn't work when topology has loops...
 - One loop: Packets loop around cycle forever (bad)
 - Multiple loops: Packets multiply exponentially (very bad)
- Solution?
- When local information (e.g., neighbors) changes, send to all neighbors
- When you receive info packet from neighbor, send to all other neighbors
 - .. unless you've already seen this info packet (in which case, drop it)
- How do you know if it's the first time you've seen it?
 - Easy solution: routers put a sequence number in their updates

- Every router has its own sequence number
 - When it sends a routing message, it puts it in the packet...
 - .. and then increments it
- Every router *tracks* largest sequence number seen from <u>every other router</u>

 Would this be a problem if we used this protocol as an EGP?
- .. if it sees an update with a smaller/equal sequence number...
 - the update is old drop it
- .. if it sees an update with a larger sequence number...
 - the update is new remember sequence number and flood update to all other neighbors

- How to make flooding reliable?
- Can use our same old trick: periodically resend it
- IS-IS and OSPF both do this
- .. but do more clever stuff too
 - .. delivers reliability faster without resending more often
 - We won't explore this in detail in context of Link-State
 - .. but we'll talk about reliability in more detail in week 6

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - Tell everyone else about any adjacent destinations

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - By flooding this information
 - Tell everyone else about any adjacent destinations

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - By flooding this information
 - Tell everyone else about any adjacent destinations

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - By flooding this information
 - Tell everyone else about any adjacent destinations
 - By flooding info about destinations too (e.g., static routes)

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - By flooding this information
 - Tell everyone else about any adjacent destinations
 - By flooding info about destinations too (e.g., static routes)

- All routers need info about:
 - All links between all routers
 - All destinations
- Every router must:
 - Find out who its neighbors are
 - By exchanging hellos
 - Tell everyone about its neighbors (i.e., its links to them)
 - By flooding this information
 - Tell everyone else about any adjacent destinations
 - By flooding info about destinations too (e.g., static routes)

- Every router:
 - Gets the state of all links and location of all destinations
 - ...
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph
 - Using any pathfinding algorithm (e.g., Dijkstra's)
 - Uses the second hop in those paths to populate its forwarding table
 - If every router chooses compatible paths, we're done!

- Every router:
 - Gets the state of all links and location of all destinations
 - Via hellos and flooding
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph
 - Using any pathfinding algorithm (e.g., Dijkstra's)
 - Uses the second hop in those paths to populate its forwarding table
 - If every router chooses compatible paths, we're done!

- Every router:
 - Gets the state of all links and location of all destinations
 - Via hellos and flooding
 - Uses that global information to build full graph
 - Just pastes all link/destination info together into a graph
 - Finds paths from itself to every destination on graph
 - Using any pathfinding algorithm (e.g., Dijkstra's)
 - Uses the second hop in those paths to populate its forwarding table
 - If every router chooses compatible paths, we're done!

Questions?

Link-State: Convergence

- Using plain non-parallel Dijkstra's algorithm (or whatever)
 - Dijkstra's will never find a looping path
 - So we never have loops in Link-State protocols
 - Is this true?
 - It's false!
 - We only have control of our own next hop!
 - If routers don't have same global view of topology, all bets are off!
 - For example:
 - R1 doesn't know about failure yet, sends packet to R3
 - R3 gets packet, sends to to R1
 - (Loop)

Link-State: Convergence

- Sources of convergence delay:
 - Time to detect failure
 - Time to flood link-state information (proportional to network diameter)
 - Time to re-compute paths/tables
- Problems during convergence period:
 - Deadends
 - Looping packets
 - Out-of-order packets reaching the destination
 - Should not cause semantic problems
 - But can create performance problems!
 - (We'll see why later in semester)

Link-State: Timeline for Local Failure

- Failure not detected
 - Packets sent into dead link (dropped)
- Detected, not recomputed
 - Deadends
- Detected/computed, not globally notified/computed
 - Could be loops
- As nodes become aware, routes may change
 - Continued looping, and possible reorderings
 - Why reordering?

Questions?

Link-State in a single slide

- Link state is super simple conceptually:
 - Everyone floods link/destination information
 - Everyone then has global map of network
 - Everyone independently computes next hops

.. all the complexity is in the details

The Spanning Tree Protocol

- We've been looking at Distance-Vector and Link-State protocols:
 - Tables filled in by ongoing routing process
 - Are "seeded" with static routes for destinations
 - Very common for routing at the network layer (L3)
 - i.e., using IP addresses
- Let's look at a very different approach to filling in our tables!
- Learning switches:
 - Tables filled in opportunistically using data packets
 - No "seeding" with static entries required!
 - Very common for routing at the link layer (L2)
 - Many people would say it is not routing, but if it looks like a duck, quacks like a
 duck, and fills in forwarding tables like a duck...
 - (I may be messing up this metaphor.)

- Major problem with learning switches:
 - Floods when destination is unknown.
 - .. floods have problems when topology has loops
- Our previous solution doesn't work in this case
 - .. we'll come back to this in just a second

- Note: the decision to flood is done on a switch-by-switch basis...
- Packets are not purely flooded or purely point-to-point throughout their lifetimes
- Instead, at each switch, packets are:
 - Sent out correct port if table entry exists
 - Flooded out all ports (except incoming) if not

Learning Switches: Pseudocode-Style

```
on arrival of packet from neighbor previous_hop:
    # Learn
    table[packet.source].next_hop = previous_hop
    table[packet.source].ttl = five_minutes
    # Forward
    if packet.destination in table:
        next_hop = table[packet.destination].next_hop
        if next_hop == previous_hop:
            packet.drop() # why?
        else:
            packet.forward_to(next_hop)
    else: # destination not in table
        packet.flood_to_neighbors(except=previous_hop)
```

- Major problem with learning switches:
 - Floods when destination is unknown
 - .. floods have problems when topology has loops
- Our previous solution doesn't work in this case

To Be Continued...

Poison Reverse vs. Route Poisoning

Poison Reverse vs. Route Poisoning

- Poison reverse is just split horizon taken up a notch
 - Try to prevent your next hop from using you as a next hop
 - Done using a special case in your route advertisement code

Best paths to A

Advertisements from switch 1 with no split horizon or poison reverse

Advertisements from switch 1 with split horizon

Advertisements from switch 1 with poison reverse

All advertisements from all switches not sent due to split horizon

All poison reverse advertisements from all switches

Best paths again -- note the relationship to SH / PR advertisements!

- Split horizon:
 - Don't send advertisement to your next hop
- Poison reverse:
 - Send infinite advertisement to your next hop

- Both intended to prevent your next hop from using you as their next hop
 - It wouldn't make any sense!
 - Why would this ever happen?
 - See examples in lecture, discussion, project...

Poison Reverse vs. Route Poisoning

- Poison reverse is just split horizon taken up a notch
 - Try to prevent your next hop from using you as a next hop
 - Done using a special case in your route advertisement code

Poison Reverse vs. Route Poisoning

- Poison reverse is just split horizon taken up a notch
 - Try to prevent your next hop from using you as a next hop
 - Done using a special case in your route advertisement code
- Poisoning is about actively telling neighbors about non-routes
 - Don't just wait for them to time out...
 - Tell them you are infinitely far away from destination
 - Uses normal advertisement code
 - Actually put an infinite route in your table and it mostly "just works"

Route Poisoning

- With no poisoning, route through R1 will have to expire on each switch consecutively before R7 will accept the alternate route.
- This can take as long as like six expiration intervals, and triggered updates don't help!
- With poisoning, when R2 notices the link go down (either directly or via timeout), it changes distance of route using R1 to infinity (poison).
- This takes more like six *advertisements* to reach R7! Even with only periodic advertisements, this is likely a big savings. With triggered updates, it can be huge!

Poison Reverse vs. Route Poisoning

- Poison reverse is just split horizon taken up a notch
 - Try to prevent your next hop from using you as a next hop
 - Done using a special case in your route advertisement code
- Poisoning is about actively telling neighbors about non-routes
 - Don't just wait for them to time out...
 - Tell them you are infinitely far away from destination
 - Uses normal advertisement code
 - Actually put an infinite route in your table and it mostly "just works"

Poison Reverse vs. Route Poisoning

- Poison reverse is just split horizon taken up a notch
 - Try to prevent your next hop from using you as a next hop
 - Done using a special case in your route advertisement code
- Poisoning is about actively telling neighbors about non-routes
 - Don't just wait for them to time out...
 - Tell them you are infinitely far away from destination
 - Uses normal advertisement code
 - Actually put an infinite route in your table and it mostly "just works"
- Note: Receiver of ∞ advertisement can't tell the difference between them!
 - Just knows not to use sender as part of its path!