
Routing #3

Today

• A look at some self-test questions

• Finishing up Distance-Vector protocols
• Link-State protocols

• Learning Switches

Self-Test Questions

Self-Test from Lecture 5

● Routing ensures reliable delivery of packets between end hosts.
● True (33%)
● False (67%)

Self-Test from Lecture 5

● If you have valid routing state, does that mean the network will never drop any packets?
● Yes
● No (90%+)

● Routing ensures reliable delivery of packets between end hosts.
● True (33%)
● False (67%)

If packets can still get dropped, then the network isn’t ensuring they’re reliably delivered.

Routing may be necessary, but it’s not sufficient!

Self-Test from Lecture 5

● Does the "no loops, no dead ends" theorem only hold true for destination-
based forwarding?

● Yes (38%)
● No (63%)

Lecture 5
“Same basic no loops or dead ends

condition generalizes to at least* any other
system that does deterministic forwarding

based on fixed packet headers (that is, it’s
not limited to destination-based routing)”

Self-Test from Lecture 5

● Routing occurs when a data packet arrives at a router and is sent out another port.
● True (46%)
● False (54%)

R2

R3

R4

Packet ?

?

● When packet arrives, router forwards
it to one of its neighbors

Self-Test from Lecture 5

● Routing occurs when a data packet arrives at a router and is sent out another port.
● True (46%)
● False (54%)

● Forwarding occurs when a data packet arrives at a router and is sent out another port.
● Routing determines which neighbor to forward to (i.e. which port to forward out of).

R2

R3

R4

Packet ?

?

● When packet arrives, router forwards
it to one of its neighbors

Questions?

Finishing up D-V

From B-F to D-V

● We refined our update rule
● We resolved some wacky problems with split horizon
● We ensured that we eventually converge instead of counting to infinity
● We made it robust to packet drops/ordering by advertising periodically
● We saw that we can adapt to new links easily
● We can identify failed links and dead routes by missing advertisements

Distance-Vector

Can it handle failed links?

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

R1 A:1

t=10

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

t=10

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11 21

t=10

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 11 21

Dst Nxt,Cost TTL

A R1,2 16

t=15

 🔥 🔥 R2 A:2 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 11

t=20

R1 A:1

 🔥 🔥 🔥 🔥R1 A:1
 🔥

Ignored
again

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16 21

Dst Nxt,Cost TTL

A R1,2 6

R2 A:2

t=25

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 16

Dst Nxt,Cost TTL

A R1,2 1

t=30

R1 A:1

 🔥 🔥 🔥 🔥R1 A:1
 🔥

Ignored
again

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 0

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

t=46

 🔥 🔥 🔥 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

Dst Nxt,Cost TTL

t=50

R1 A:1

 🔥 🔥 🔥 🔥

Accepted this
time!

R1 A:1
 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 21

Dst Nxt,Cost TTL

t=50

R1 A:1

 🔥 🔥 🔥 🔥

Accepted this
time!

R1 A:1
 🔥

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 19

Dst Nxt,Cost TTL

t=52

 🔥 🔥 🔥 🔥 R3 A:5

Distance-Vector: Failures

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R1,5 19

Dst Nxt,Cost TTL

A R3,6 21

t=52

 🔥 🔥 🔥 🔥

Questions?

Distance-Vector

Evidence of Absence (of Routes)
(Poisoning)

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 0

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 6

Dst Nxt,Cost TTL

t=40

R1 A:1

 🔥 🔥 🔥 🔥

Rejected

R1 A:1
 🔥

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 0

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 15

Dst Nxt,Cost TTL

A R1,2 None,∞ 21

t=31

 🔥 🔥 🔥 🔥

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 11

Dst Nxt,Cost TTL

A R1,2 None,∞ 17

t=35

 🔥 🔥 🔥 🔥 R2 A:∞

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,3 ∞ 21

Dst Nxt,Cost TTL

A R1,2 None,∞ 17

t=35

 🔥 🔥 🔥 🔥 R2 A:∞

Distance-Vector: Poison

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

4

Dst Nxt,Cost TTL

A R2,∞ R1,5 16 21

Dst Nxt,Cost TTL

A None,∞ 12

t=40

R1 A:1

 🔥 🔥 🔥 🔥

Accepted

R1 A:1
 🔥

Distance-Vector: Poison

● Key idea:
○ Instead of just not advertising a route
○ .. actively advertise that you don’t have a route

● Do this by advertising an impossibly high cost
○ A “poison” route

● This route should propagate like other routes, poisoning the entry on any
other router that was using it

● Can be much faster than waiting for timeouts!

Distance-Vector: Poison

● And this doesn’t just work for timed advertisements…

● If you get a poison advertisement and it changes your table…
○ Will trigger you to send poison
○ Propagates dead routes as fast as they can reach and be processed by

neighbor!

● .. can be much, much faster than waiting for timeouts!

Distance-Vector: Poison

● Besides expired routes, where else did we not advertise something?

Distance-Vector: Poison

● Besides expired routes, where else did we not advertise something?
○ Split horizon!

● In split horizon, we had a route but chose not to advertise
○ Don’t want to advertise a route back to router that advertised it to us!
○ Can lead to sending things backwards (or even looping)

Distance-Vector: Poison

● Besides expired routes, where else did we not advertise something?
○ Split horizon!

● In split horizon, we had a route but chose not to advertise
○ Don’t want to advertise a route back to router that advertised it to us!
○ Can lead to sending things backwards (or even looping)

● Instead of not advertising in this case… advertise infinite cost
○ We call this poison reverse

○ Same exact idea as split horizon, but more aggressive

Distance-Vector: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R1,2 8

Dst Nxt,Cost TTL

A R1,2 8

 🔥
 ☠

Distance-Vector: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R1,2 0.001

Dst Nxt,Cost TTL

A R1,2 0.001

R2 A:2

R3 A:2 🔥
 ☠

Distance-Vector: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R3,3 21

R2 A:2

R3 A:2 🔥
 ☠

Distance-Vector: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 21

Dst Nxt,Cost TTL

A R3,3 21

With split horizon, loopy
state exists until expiration

 🔥
 ☠

Distance-Vector: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 11

Dst Nxt,Cost TTL

A R3,3 11

 🔥
 ☠

Distance-Vector: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,3 11

Dst Nxt,Cost TTL

A R3,3 11

R2 A:∞

R3 A:∞ 🔥
 ☠

Distance-Vector: Poison Reverse

R1A R3

Dst Nxt,Cost TTL

A Direct,1 ---

R2

Dst Nxt,Cost TTL

A R2,∞ 21

Dst Nxt,Cost TTL

A R3,∞ 21

R2 A:∞

R3 A:∞

With poison reverse, loopy state
exists until next advertisement

 🔥
 ☠

Questions?

Distance-Vector: Poison

● Poisoning and poison reverse…

● In both cases, without poisoning, you would have not sent a route
● Instead, send an explicitly terrible route (any other route will be better)

● (And never forward using these terrible infinite-length routes.)

Distance-Vector

More events to trigger on

Distance-Vector: More triggers

● We know that our table changing should trigger us to send an update

● Can be useful to handle other events too...

Distance-Vector: More triggers

● We know that our table changing should trigger us to send an update

● Can be useful to handle other events too…

● Sometimes we can detect when a link becomes available
○ Immediately send new neighbor advertisements
○ No need to wait for timer

Distance-Vector: More triggers

● We know that our table changing should trigger us to send an update

● Can be useful to handle other events too…

● Sometimes we can detect when a link becomes available
○ Immediately send new neighbor advertisements
○ No need to wait for timer

● Sometimes we can detect when a link fails
○ Immediately poison all table entries using that link
○ .. if there are any, advertise the newly poisoned ones!

Distance-Vector

Summing up...

From B-F to D-V

● We refined our update rule
● We resolved some wacky problems with split horizon / poison reverse
● We ensured that we eventually converge instead of counting to infinity
● We made it robust to packet drops/ordering by advertising periodically
● We saw that we can adapt to new links easily
● We can identify failed links and dead routes by missing advertisements
● We can converge faster by explicitly signaling the absence of a route
● We can adapt more quickly by advertising when “triggered” by events

● This is now a pretty good routing protocol!

Questions?

Link-State Routing

Link-State Routing

● Another major class of routing protocols: Link-State routing
● Newer than Distance-Vector
● Very common as an Interior Gateway Protocol!

● Two major examples:
● IS-IS (Intermediate System to Intermediate System)
● OSPF (Open Shortest Path First)

● Used for Berkeley’s network

● Works very differently than Distance-Vector!

● Let’s explore Link-State and sketch out a design…

Distance-Vector vs. Link-State

● Distance-Vector
● Global computation (it’s distributed across all nodes)
● .. using local data (from just itself and its neighbors)

Distance-Vector vs. Link-State

● Distance-Vector
● Global computation (it’s distributed across all nodes)
● .. using local data (from just itself and its neighbors)

● Link-State
● Local computation
● .. using global data (from all parts of the network)

Distance-Vector vs. Link-State

● Distance-Vector
● Global computation (it’s distributed across all nodes)
● .. using local data (from just itself and its neighbors)

● Link-State
● Local computation
● .. using global data (from all parts of the network)

● What does this mean?
● Hopefully the D-V part makes sense to you!
● Let’s look at the L-S part…

Link-State

● A router locally computes routing state…
● .. using “global data (from all parts of the network)”

● What’s this “global data”?
● The state of every link (hence: link-state)

● Is it up?
● What is its cost?

2

● Information about the state of links:
● Link R1-R2 exists and has cost 1
● Link R1-R3 exists and has cost 10
● Link R4-R5 exists and has cost 7
● Link R1-R4 exists and has cost 2
● Link R2-R5 exists and has cost 1
● Link R3-R4 exists and has cost 1

● What are we missing info about?
● Destinations!

Link-State: Global Data

1
R1

R5

R4

7

R3

10

1

1

R2

● Information about the state of links:
● Link R1-R2 exists and has cost 1
● Link R1-R3 exists and has cost 10
● Link R4-R5 exists and has cost 7
● Link R1-R4 exists and has cost 2
● Link R2-R5 exists and has cost 1
● Link R3-R4 exists and has cost 1

● Information about destinations:
● R3 has destination A
● R4 has destination B

● .. we can use this info to build
complete map (global view) of topology

A

B

1

2

Link-State: Global Data

1
R1

R5

R4

7

R3

10

1

R2

A

B

Link-State: Global Data

● If router had global view, could
easily compute paths

● Imagine you’re R5
● What’s the best path to A?

● R5,R2,R1,R4,R3,A
● Which of that is useful to R5?

● Only the R2 part!

2

1
R1

R5

R4

7

R3

10

1

1

R5’s Table

Dst Nxt

A

R2

R2

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● Uses that global information to build full graph

● Finds paths from itself to every destination on graph

● Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● How?! We’ll come back to this in a second…

● Uses that global information to build full graph

● Finds paths from itself to every destination on graph

● Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● How?! We’ll come back to this in a second…

● Uses that global information to build full graph

● Finds paths from itself to every destination on graph

● Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● How?! We’ll come back to this in a second…

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph

● Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● How?! We’ll come back to this in a second…

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph

● Uses the second hop in those paths to populate its forwarding table

Link-State Routing: How to Find Paths?

● Each router has the complete topology; can basically do it however it wants!
● For least-cost routes, this is called Single Source Shortest Path (SSSP)

● Some obvious algorithm choices:
● Bellman-Ford algorithm — the serial version — O(|E| · |V|)
● Dijkstra’s algorithm — O(|E| + |V| log |V|)

● Can you do better?
● Breadth First Search (hop count only) — O(|E| + |V|)
● Dynamic shortest path algorithms — (various)
● Approximate shortest path algorithms — (various)
● Parallel SSSP algorithms — (various)
● ?

But there’s nothing that says
you need to do least-cost routing!

(But beware the next point…)

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● How?! We’ll come back to this in a second…

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph
● Using any pathfinding algorithm (e.g., Dijkstra’s)

● Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● How?! We’ll come back to this in a second…

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph
● Using any pathfinding algorithm (e.g., Dijkstra’s)

● Uses the second hop in those paths to populate its forwarding table

A

Link-State: Populating Tables

● Important: Remember, each router
can only influence its own next hop!

● Other routers must be coming up
with paths which are “compatible”

2

1
R1

R5

R4

7

R3

10

1

1

R5’s Table

Dst Nxt

A

R2

R2

A

Link-State: Populating Tables

● Important: Remember, each router
can only influence its own next hop!

● Other routers must be coming up
with paths which are “compatible”

● Pretty easy for least-cost routing if:
● Minimizing the same cost
● All costs are > 0

2

1
R1

R5

R4

7

R3

10

1

1

R5’s Table

Dst Nxt

A

R2

R2

A

Link-State: Populating Tables

● Important: Remember, each router
can only influence its own next hop!

● Other routers must be coming up
with paths which are “compatible”

● Pretty easy for least-cost routing if:
● Minimizing the same cost
● All costs are > 0
● All routers agree on topology!

2

1
R1

R5

R4

7

R3

10

1

1

R5’s Table

Dst Nxt

A

R2

R2

A

Link-State: Populating Tables

● Important: Remember, each router
can only influence its own next hop!

● Other routers must be coming up
with paths which are “compatible”

● Pretty easy for least-cost routing if:
● Minimizing the same cost
● All costs are > 0
● All routers agree on topology!

● Given all those, don’t even need to
implement same exact algorithm
(e.g., break ties exactly the same)

2

1
R1

R5

R4

7

R3

10

1

1

R2

Link-State: Populating Tables

● Counterexample: R2 and R5 both compute apparently-feasible paths…
● .. but they don’t work together!
● (Packets loop between R2 and R5)

A

R1

R5

R4

R3

R2

R5’s Table

Dst Nxt

A R2

R2’s Table

Dst Nxt

A R5

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● How?! We’ll come back to this in a second…

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph
● Using any pathfinding algorithm (e.g., Dijkstra’s)

● Uses the second hop in those paths to populate its forwarding table
● If every router chooses compatible paths, we’re done!

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● …

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph
● Using any pathfinding algorithm (e.g., Dijkstra’s)

● Uses the second hop in those paths to populate its forwarding table
● If every router chooses compatible paths, we’re done!

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● Tell everyone about its neighbors (i.e., its links to them)

● Tell everyone else about any adjacent destinations

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● Tell everyone about its neighbors (i.e., its links to them)

● Tell everyone else about any adjacent destinations

A MA

Link-State: Finding Your Neighbors

Hi, I’m Ada. Hi, I’m Margaret.Hi, I’m Charles.

My neighbors: Charles & Margaret My neighbors: AdaMy neighbors: Ada

C MC

● How does anyone ever know who their neighbors are?
● Introduce yourselves!

● Routers periodically send hello messages to neighbors
● If a neighbor goes quiet, eventually assume they’re gone

A

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● Tell everyone else about any adjacent destinations

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● Tell everyone else about any adjacent destinations

Link-State: Flooding

● Exchanging hellos tells you who your neighbors are (local info)
● But we need to know who everyone’s neighbors are!

● Solution is called flooding

● Strawman solution:
● When local information (e.g., neighbors) changes, send to all neighbors
● When you receive info packet from neighbor, send to all other neighbors

Margaret is neighbors with Ada; pass it on!

Link-State: Flooding

● Exchanging hellos tells you who your neighbors are (local info)
● But we need to know who everyone’s neighbors are!

● Solution is called flooding

● Strawman solution:
● When local information (e.g., neighbors) changes, send to all neighbors
● When you receive info packet from neighbor, send to all other neighbors

● Does this always work?

Link-State: Flooding

Note that you can easily
recreate this demo in the
Project 1 simulator using
the example “hub”
switch.

Just set up the shown
topology and send a ping.

Then add a link between
R2 and R6.

Then add a link between
R3 and R4.

(Or use any other
topology with one or two
loops!)

Link-State: Flooding

● Naive solution doesn’t work when topology has loops…
● One loop: Packets loop around cycle forever (bad)
● Multiple loops: Packets multiply exponentially (very bad)

● Solution?

● When local information (e.g., neighbors) changes, send to all neighbors
● When you receive info packet from neighbor, send to all other neighbors

● .. unless you've already seen this info packet (in which case, drop it)

● How do you know if it’s the first time you’ve seen it?
● Easy solution: routers put a sequence number in their updates

Link-State: Flooding

● Every router has its own sequence number
● When it sends a routing message, it puts it in the packet…
● .. and then increments it

● Every router tracks largest sequence number seen from every other router

● .. if it sees an update with a smaller/equal sequence number…
● the update is old — drop it

● .. if it sees an update with a larger sequence number…
● the update is new — remember sequence number and flood update

to all other neighbors

Would this be a problem if we used this protocol as an EGP?

Link-State: Flooding

● How to make flooding reliable?

● Can use our same old trick: periodically resend it

● IS-IS and OSPF both do this

● .. but do more clever stuff too
● .. delivers reliability faster without resending more often

● We won’t explore this in detail in context of Link-State
● .. but we’ll talk about reliability in more detail in week 6

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● Tell everyone else about any adjacent destinations

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● By flooding this information
● Tell everyone else about any adjacent destinations

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● By flooding this information
● Tell everyone else about any adjacent destinations

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● By flooding this information
● Tell everyone else about any adjacent destinations

● By flooding info about destinations too (e.g., static routes)

Link-State: Sharing Info Globally

A

2

1
R1

R5

R4

7

R3

10

1

1

R2

2

Hey, everyone!
I can reach A with cost of 2!

Cool.

Got it.

Word.

👍

Flood info about destinations (e.g., static
routes to hosts) using same flooding

mechanism you use to share info about
router topology (neighboring routers).

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● By flooding this information
● Tell everyone else about any adjacent destinations

● By flooding info about destinations too (e.g., static routes)

Link-State: Sharing Info Globally

● All routers need info about:
● All links between all routers
● All destinations

● Every router must:
● Find out who its neighbors are

● By exchanging hellos
● Tell everyone about its neighbors (i.e., its links to them)

● By flooding this information
● Tell everyone else about any adjacent destinations

● By flooding info about destinations too (e.g., static routes)

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● …

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph
● Using any pathfinding algorithm (e.g., Dijkstra’s)

● Uses the second hop in those paths to populate its forwarding table
● If every router chooses compatible paths, we’re done!

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● Via hellos and flooding

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph
● Using any pathfinding algorithm (e.g., Dijkstra’s)

● Uses the second hop in those paths to populate its forwarding table
● If every router chooses compatible paths, we’re done!

Link-State: Overview

● Every router:
● Gets the state of all links and location of all destinations

● Via hellos and flooding

● Uses that global information to build full graph
● Just pastes all link/destination info together into a graph

● Finds paths from itself to every destination on graph
● Using any pathfinding algorithm (e.g., Dijkstra’s)

● Uses the second hop in those paths to populate its forwarding table
● If every router chooses compatible paths, we’re done!

Questions?

Link-State: Convergence

● Using plain non-parallel Dijkstra’s algorithm (or whatever)
● Dijkstra’s will never find a looping path
● So we never have loops in Link-State protocols

● Is this true?

● It’s false!

● We only have control of our own next hop!
● If routers don’t have same global view of topology, all bets are off!
● For example:

● R1 doesn’t know about failure yet, sends packet to R3
● R3 gets packet, sends to to R1
● (Loop)

A

R2

R1

R3

🔥
10

Link-State: Convergence

● Sources of convergence delay:
● Time to detect failure
● Time to flood link-state information (proportional to network diameter)
● Time to re-compute paths/tables

● Problems during convergence period:
● Deadends
● Looping packets
● Out-of-order packets reaching the destination

● Should not cause semantic problems
● But can create performance problems!
● (We’ll see why later in semester)

Link-State: Timeline for Local Failure

● Failure not detected
● Packets sent into dead link (dropped)

● Detected, not recomputed
● Deadends

● Detected/computed, not globally notified/computed
● Could be loops

● As nodes become aware, routes may change
● Continued looping, and possible reorderings
● Why reordering?

Questions?

Link-State in a single slide

● Link state is super simple conceptually:

● Everyone floods link/destination information

● Everyone then has global map of network

● Everyone independently computes next hops

● .. all the complexity is in the details

Learning Switches
&

The Spanning Tree Protocol

Learning Switches

● We've been looking at Distance-Vector and Link-State protocols:
● Tables filled in by ongoing routing process
● Are “seeded” with static routes for destinations
● Very common for routing at the network layer (L3)

● i.e., using IP addresses

● Let's look at a very different approach to filling in our tables!

● Learning switches:
● Tables filled in opportunistically using data packets
● No “seeding” with static entries required!
● Very common for routing at the link layer (L2)

● Many people would say it is not routing, but if it looks like a duck, quacks like a
duck, and fills in forwarding tables like a duck… 🦆
● (I may be messing up this metaphor.)

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

S4

Dst Nxt Dst Nxt

Dst Nxt Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt Dst Nxt

Dst Nxt Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

Dst Nxt

A S1

Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

A sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

B gets
the packet

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

B replies
to A

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

B replies
to A

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

B S2

S4

Dst Nxt

A S1

B S3

Dst Nxt

A S2

B B

Dst Nxt

A S1

Dst Nxt

A S4

B replies
to A

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

B S2

S4

Dst Nxt

A S1

B S3

Dst Nxt

A S2

B B

Dst Nxt

A S1

Dst Nxt

A S4

Next packet to
B follows

efficient path

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

B S2

S4

Dst Nxt

A S1

B S3

Dst Nxt

A S2

B B

Dst Nxt

A S1

Dst Nxt

A S4

What’s the big
problem here?

Bad news!

Learning Switches

● Major problem with learning switches:
● Floods when destination is unknown
● .. floods have problems when topology has loops

● Our previous solution doesn’t work in this case
● .. we’ll come back to this in just a second

Learning Switches

● Note: the decision to flood is done on a switch-by-switch basis…

● Packets are not purely flooded or purely point-to-point throughout their lifetimes

● Instead, at each switch, packets are:
● Sent out correct port if table entry exists
● Flooded out all ports (except incoming) if not

Learning Switches: Pseudocode-Style

on arrival of packet from neighbor previous_hop:
 # Learn
 table[packet.source].next_hop = previous_hop
 table[packet.source].ttl = five_minutes

 # Forward
 if packet.destination in table:
 next_hop = table[packet.destination].next_hop
 if next_hop == previous_hop:
 packet.drop() # why?
 else:
 packet.forward_to(next_hop)
 else: # destination not in table
 packet.flood_to_neighbors(except=previous_hop)

Learning Switches

● Major problem with learning switches:
● Floods when destination is unknown
● .. floods have problems when topology has loops

● Our previous solution doesn’t work in this case

To Be Continued…

Poison Reverse vs. Route Poisoning

Poison Reverse vs. Route Poisoning

● Poison reverse is just split horizon taken up a notch
○ Try to prevent your next hop from using you as a next hop
○ Done using a special case in your route advertisement code

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

Best paths to A

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

A:3 “Normal” advertisement
to next hop

Advertisements from switch 1 with no split horizon or poison reverse

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

A:3 No advertisement
to next hop

Advertisements from switch 1 with split horizon

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

A:3
A:∞

Infinite (poison)
advertisement

to next hop

Advertisements from switch 1 with poison reverse

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

All advertisements from all switches not sent due to split horizon

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

All poison reverse advertisements from all switches

Split Horizon and Poison Reverse

A

1

7

3

6
8

2

5

4

9

11

10

Best paths again -- note the relationship to SH / PR advertisements!

Split Horizon and Poison Reverse

● Split horizon:
● Don’t send advertisement to your next hop

● Poison reverse:
● Send infinite advertisement to your next hop

● Both intended to prevent your next hop from using you as their next hop
● It wouldn't make any sense!
● Why would this ever happen?

● See examples in lecture, discussion, project…

Poison Reverse vs. Route Poisoning

● Poison reverse is just split horizon taken up a notch
○ Try to prevent your next hop from using you as a next hop
○ Done using a special case in your route advertisement code

Poison Reverse vs. Route Poisoning

● Poison reverse is just split horizon taken up a notch
○ Try to prevent your next hop from using you as a next hop
○ Done using a special case in your route advertisement code

● Poisoning is about actively telling neighbors about non-routes
○ Don’t just wait for them to time out…
○ Tell them you are infinitely far away from destination
○ Uses normal advertisement code

■ Actually put an infinite route in your table and it mostly “just works”

Route Poisoning

A R7R3 R4 R5 R6

20

R1 R2 🔥

• With no poisoning, route through R1 will have to expire on each switch consecutively before
R7 will accept the alternate route.

• This can take as long as like six expiration intervals, and triggered updates don’t help!

• With poisoning, when R2 notices the link go down (either directly or via timeout), it changes
distance of route using R1 to infinity (poison).

• This takes more like six advertisements to reach R7! Even with only periodic advertisements,
this is likely a big savings. With triggered updates, it can be huge!

Poison Reverse vs. Route Poisoning

● Poison reverse is just split horizon taken up a notch
○ Try to prevent your next hop from using you as a next hop
○ Done using a special case in your route advertisement code

● Poisoning is about actively telling neighbors about non-routes
○ Don’t just wait for them to time out…
○ Tell them you are infinitely far away from destination
○ Uses normal advertisement code

■ Actually put an infinite route in your table and it mostly “just works”

Poison Reverse vs. Route Poisoning

● Poison reverse is just split horizon taken up a notch
○ Try to prevent your next hop from using you as a next hop
○ Done using a special case in your route advertisement code

● Poisoning is about actively telling neighbors about non-routes
○ Don’t just wait for them to time out…
○ Tell them you are infinitely far away from destination
○ Uses normal advertisement code

■ Actually put an infinite route in your table and it mostly “just works”

● Note: Receiver of ∞ advertisement can’t tell the difference between them!
○ Just knows not to use sender as part of its path!

