Routing #3

Today

* Alook at some self-test questions

* Finishing up Distance-Vector protocols
 Link-State protocols

« Learning Switches

Self-Test Questions

Self-Test from Lecture 5

e Routing ensures reliable delivery of packets between end hosts.
e True (33%)
e False (67%)

Self-Test from Lecture 5

If you have valid routing state, does that mean the network will never drop any packets?

Yes
No (90%+) ¢——

Routing ensures reliable delivery of packets between end hosts.
e True (33%)
e False (67%)

If packets can still get dropped, then the network isn’t ensuring they’re reliably delivered.

Routing may be necessary, but it’s not sufficient!

Self-Test from Lecture 5

e Does the "no loops, no dead ends" theorem only hold true for destination-
based forwarding?
Yes (38%)

No (63%)

Lecture 5
“Same basic no loops or dead ends
condition generalizes to at least* any other

system that does deterministic forwarding
based on fixed packet headers (that is, it’s
not limited to destination-based routing)’

Self-Test from Lecture 5

e Routing occurs when a data packet arrives at a router and is sent out another port.
e True (46%)
e False (54%)

e \When packet arrives, router forwards

it to one of its neighbors

Self-Test from Lecture 5

e Routing occurs when a data packet arrives at a router and is sent out another port.
e True (46%)
e False (54%)

e \When packet arrives, router forwards

it to one of its neighbors

e Forwarding occurs when a data packet arrives at a router and is sent out another port.
e Routing determines which neighbor to forward to (i.e. which port to forward out of).

Questions?

Finishing up D-V

From B-F to D-V

We refined our update rule

We resolved some wacky problems with split horizon

We ensured that we eventually converge instead of counting to infinity

We made it robust to packet drops/ordering by advertising periodically

We saw that we can adapt to new links easily

We can identify failed links and dead routes by missing advertisements

Distance-Vector

Can it handle failed links?

Distance-Vector: Failures

4
@ .

A R1Q 14 21
>[R1 A:1
R1] w2 [R3
o3 Jwcen | st |
A A R2,3 16

Direct,1

Distance-Vector: Failures

Distance-Vector: Failures

R1,2 21

@}E@-@M—@ E

A R2,3 16

Direct,1

Distance-Vector: Failures

16

R1,2

@—E“—“M—@ Fg

Direct,1 14 21

Distance-Vector: Failures

4 again
-

R1,2 é
)

@-@ R

A - A R2,3 16

Direct,1

Distance-Vector: Failures

6

R1,2

@—E“—“M—@ Fg

Direct,1 16 21

Distance-Vector: Failures

4 again
-

R1,2 é
)

@-@ R

A - A R2,3 16

Direct,1

Distance-Vector: Failures

4
«D .

R1,2 0

@}E@-@M—@ E

A R2,3 15

Direct,1

Distance-Vector: Failures

O

A R2,3 15

Direct,1

Distance-Vector: Failures

O

Direct,1

Dis’ronce-VeC’ror' Failures

Accepted this
time!

Dis’ronce-VeC’ror' Failures

Accepted this
time!

Distance-Vector: Failures

A R1,5 19

Direct,1

Distance-Vector: Failures

R3,6 21

@}E@-@M—@ E

A R1,5 19

Direct,1

Questions?

Distance-Vector

Evidence of Absence (of Routes)

(Poisoning)

Distance-Vector: Poison

4
«D .

R1,2 0

@}E@-@M—@ E

A R2,3 15

Direct,1

Distance-Vector: Poison

O

A R2,3 15

Direct,1

Distance-Vector: Poison

Rejected

Distance-Vector: Poison

4
«D .

R1,2 0

@}E@-@M—@ E

A R2,3 15

Direct,1

Distance-Vector: Poison
=31 :
4)

R41-2 None,» 21

@}E@-@M—@ E

A R2,3 15

Direct,1

Distance-Vector: Poison

R41-2 None,»

@—E“—“M—@ -

A R2,3 11

Direct,1

Distance-Vector: Poison

R41-2 None,»

@—E“—“M—@ Fg

Direct,1 R2,3

Distance-Vector: Poison

<D (
None,

Oy By

A —

Direct,1 R2;2 R1,5 16 21

Accepted
- [
11 A1

Distance-Vector: Poison

e Key idea:
o Instead of just not advertising a route
o .. actively advertise that you don’t have a route

e Do this by advertising an impossibly high cost
o A“poison” route

e This route should propagate like other routes, poisoning the entry on any
other router that was using it

e Can be much faster than waiting for timeouts!

Distance-Vector: Poison

e And this doesn’t just work for timed advertisements...

e If you get a poison advertisement and it changes your table...
o Will trigger you to send poison
o Propagates dead routes as fast as they can reach and be processed by
neighbor!

e .. can be much, much faster than waiting for timeouts!

Distance-Vector: Poison

e Besides expired routes, where else did we not advertise something?

Distance-Vector: Poison

e Besides expired routes, where else did we not advertise something?
o Split horizon!

e In split horizon, we had a route but chose not to advertise
o Don’t want to advertise a route back to router that advertised it to us!
o Can lead to sending things backwards (or even looping)

Distance-Vector: Poison

e Besides expired routes, where else did we not advertise something?
o Split horizon!

e In split horizon, we had a route but chose not to advertise
o Don’t want to advertise a route back to router that advertised it to us!

o Can lead to sending things backwards (or even looping)

e Instead of not advertising in this case... advertise infinite cost
o We call this poison reverse

o Same exact idea as split horizon, but more aggressive

Distance-Vector: Poison Reverse

Distance-Vector: Poison Reverse

TTL

Distance-Vector: Poison Reverse

Distance-Vector: Poison Reverse

[R3
CENCTEECE
A R2.3 21

With split horizon, loopy
state exists until expiration

Distance-Vector: Poison Reverse

-

A R3,3 11

Distance-Vector: Poison Reverse

Distance-Vector: Poison Reverse

4)
A R34 21

TTL

21

With poison reverse, loopy state
exists until next advertisement

Questions?

Distance-Vector: Poison

e Poisoning and poison reverse...

e In both cases, without poisoning, you would have not sent a route
e Instead, send an explicitly terrible route (any other route will be better)
e (And never forward using these terrible infinite-length routes.)

Distance-Vector

More events o frigger on

Distance-Vector: More friggers

e \We know that our table changing should trigger us to send an update

e Can be useful to handle other events too...

Distance-Vector: More friggers

e \We know that our table changing should trigger us to send an update
e Can be useful to handle other events too...

e Sometimes we can detect when a link becomes available

o Immediately send new neighbor advertisements
o No need to wait for timer

Distance-Vector: More friggers

e \We know that our table changing should trigger us to send an update
e Can be useful to handle other events too...

e Sometimes we can detect when a link becomes available

o Immediately send new neighbor advertisements
o No need to wait for timer

e Sometimes we can detect when a link fails

o Immediately poison all table entries using that link
o ..ifthere are any, advertise the newly poisoned ones!

Distance-Vector

Summing up...

From B-F to D-V

We refined our update rule

We resolved some wacky problems with split horizon / poison reverse
We ensured that we eventually converge instead of counting to infinity
We made it robust to packet drops/ordering by advertising periodically
We saw that we can adapt to new links easily

We can identify failed links and dead routes by missing advertisements
We can converge faster by explicitly signaling the absence of a route
We can adapt more quickly by advertising when “triggered” by events

This is now a pretty good routing protocol!

Questions?

Link-State Routing

Link-State Routing

Another major class of routing protocols: Link-State routing
Newer than Distance-Vector
Very common as an Interior Gateway Protocol!

e Two major examples:
e [S-IS (Intermediate System to Intermediate System)
e OSPF (Open Shortest Path First)
e Used for Berkeley’s network

e \Works very differently than Distance-Vector!

e Let's explore Link-State and sketch out a design...

Distance-Vector vs. Link-State

e Distance-Vector
e Global computation (it's distributed across all nodes)
e .. using local data (from just itself and its neighbors)

Distance-Vector vs. Link-State

e Distance-Vector
e Global computation (it's distributed across all nodes)
e .. using local data (from just itself and its neighbors)

e Link-State
e Local computation
e .. using global data (from all parts of the network)

Distance-Vector vs. Link-State

e Distance-Vector
e Global computation (it's distributed across all nodes)
e .. using local data (from just itself and its neighbors)

e Link-State
e Local computation
e .. using global data (from all parts of the network)

e \What does this mean?
e Hopefully the D-V part makes sense to you!
e Let'slook at the L-S part...

Link-State

e Arouter locally computes routing state...
e .. using “global data (from all parts of the network)”

e \What's this “global data®?
e The state of every link (hence: link-state)
e Isitup?
e \Whatis its cost?

Link-State: Global Data

e |Information about the state of links:

Link R1-R2 exists and has cost 1
Link R1-R3 exists and has cost 10
Link R4-R5 exists and has cost 7
Link R1-R4 exists and has cost 2
Link R2-R5 exists and has cost 1
Link R3-R4 exists and has cost 1

e \What are we missing info about?
e Destinations!

Link-State: Global Data

e [nformation about the state of links:
e Link R1-R2 exists and has cost 1
Link R1-R3 exists and has cost 10
Link R4-R5 exists and has cost 7
Link R1-R4 exists and has cost 2
Link R2-R5 exists and has cost 1
Link R3-R4 exists and has cost 1

e [nformation about destinations:
e R3 has destination A
e R4 has destination B

e .. we can use this info to build
complete map (global view) of topology

Link-State: Global Data

e [frouter had global view, could
easily compute paths

Imagine you're R5
What's the best path to A?
e R5R2R1,R4,R3 A
e \Which of that is useful to R5?
e Only the R2 part!

R5’s Table

A R2

Link-State: Overview

e Every router:
e Gets the state of all links and location of all destinations

e Uses that global information to build full graph

e Finds paths from itself to every destination on graph

e Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

e Every router:
e Gets the state of all links and location of all destinations
e How?! We’ll come back to this in a second...

e Uses that global information to build full graph

e Finds paths from itself to every destination on graph

e Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

e Every router:
e (ets the state of all links and location of all destinations
e How?! We’ll come back to this in a second...

e Uses that global information to build full graph

e Finds paths from itself to every destination on graph

e Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

e Every router:
e (ets the state of all links and location of all destinations
e How?! We’ll come back to this in a second...

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph

e Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

e Every router:
e (ets the state of all links and location of all destinations
e How?! We’ll come back to this in a second...

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph

e Uses the second hop in those paths to populate its forwarding table

Link-State Routing: How to Find Paths?

e Each router has the complete topology; can basically do it however it wants!
e For least-cost routes, this is called Single Source Shortest Path (SSSP)

e Some obvious algori
e Bellman-Ford al

e Dijkstra’s algorit

e |- 1VI)
But there’s nothing that says
you need to do least-cost routing!

e Can you do better? (But beware the next point...)

Breadth First Se
Dynamic shorteste
Approximate shortest path algorithms — (various)

Parallel SSSP algorithms — (various)
?

Link-State: Overview

e Every router:
e (ets the state of all links and location of all destinations
e How?! We’ll come back to this in a second...

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph
e Using any pathfinding algorithm (e.g., Dijkstra’s)

e Uses the second hop in those paths to populate its forwarding table

Link-State: Overview

e Every router:
e (ets the state of all links and location of all destinations
e How?! We’ll come back to this in a second...

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph
e Using any pathfinding algorithm (e.g., Dijkstra’s)

e Uses the second hop in those paths to populate its forwarding table

Link-State: Populating Tables

e Important. Remember, each router
can only influence its own next hop!

e Other routers must be coming up
with paths which are “compatible”

R5’s Table

A R2

Link-State: Populating Tables

e Important. Remember, each router
can only influence its own next hop!

e Other routers must be coming up
with paths which are “compatible”
e Pretty easy for least-cost routing if:
e Minimizing the same cost
e Allcostsare>0

R5’s Table

A R2

Link-State: Populating Tables

e Important. Remember, each router
can only influence its own next hop!

e Other routers must be coming up
with paths which are “compatible”
e Pretty easy for least-cost routing if:
e Minimizing the same cost
e Allcostsare>0
e All routers agree on topology!

R5’s Table

A R2

Link-State: Populating Tables

e Important. Remember, each router
can only influence its own next hop!

e Other routers must be coming up
with paths which are “compatible”
e Pretty easy for least-cost routing if:
e Minimizing the same cost
e Allcostsare>0
e All routers agree on topology!
e Given all those, don’t even need to
implement same exact algorithm
(e.g., break ties exactly the same)

Link-State: Populating Tables

e Counterexample: R2 and R5 both compute apparently-feasible paths...
e .. but they don’t work together!
e (Packets loop between R2 and R5)

R2’s Table

A R5 m

R5’s Table

A R2

Link-State: Overview

e Every router:
e (ets the state of all links and location of all destinations
e How?! We’ll come back to this in a second...

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph
e Using any pathfinding algorithm (e.g., Dijkstra’s)

e Uses the second hop in those paths to populate its forwarding table
e |If every router chooses compatible paths, we're done!

Link-State: Overview

e Every router:

e Gets the state of all links and location of all destinations
o

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph
e Using any pathfinding algorithm (e.g., Dijkstra’s)

e Uses the second hop in those paths to populate its forwarding table
e If every router chooses compatible paths, we're done!

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:
e Find out who its neighbors are

e Tell everyone about its neighbors (i.e., its links to them)

e Tell everyone else about any adjacent destinations

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:
e Find out who its neighbors are

Link-State: Finding Your Neighbors

e How does anyone ever know who their neighbors are?
e Introduce yourselves!
e Routers periodically send hello messages to neighbors
e |f a neighbor goes quiet, eventually assume they’re gone

Hi, I'm Charles. Hi, I'm Ada. Hi, I'm Margaret.

G i
B =

My neighbors: Ada My neighbors: Charles & Margaret My neighbors: Ada

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:
e Find out who its neighbors are
e By exchanging hellos

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:

e Tell everyone about its neighbors (i.e., its links to them)

Link-State: Flooding

Exchanging hellos tells you who your neighbors are (local info)
But we need to know who everyone’s neighbors are!

e Solution is called flooding

e Strawman solution:
e \When local information (e.g., neighbors) changes, send to all neighbors
e \When you receive info packet from neighbor, send to all other neighbors

Margaret is neighbors with Ada; pass it on!

Link-State: Flooding

e Exchanging hellos tells you who your neighbors are (local info)
e But we need to know who everyone’s neighbors are!

e Solution is called flooding
e Strawman solution:
e \When local information (e.g., neighbors) changes, send to all neighbors

e \When you receive info packet from neighbor, send to all other neighbors

e Does this always work?

Link-State: Flooding

Note that you can easily
recreate this demo in the
Project 1 simulator using
the example “hub”
switch.

Just set up the shown
topology and send a ping.

Then add a link between
R2 and R6.

Then add a link between
R3 and RA4.

(Or use any other
topology with one or two
loops!)

Link-State: Flooding

e Naive solution doesn’t work when topology has loops...
e One loop: Packets loop around cycle forever (bad)
e Multiple loops: Packets multiply exponentially (very bad)

e Solution?

When local information (e.g., neighbors) changes, send to all neighbors
When you receive info packet from neighbor, send to all other neighbors
e .. unless you've already seen this info packet (in which case, drop it)

e How do you know if it’s the first time you’ve seen it?
e Easy solution: routers put a sequence number in their updates

Link-State: Flooding

e Every router has its own sequence number
e \When it sends a routing message, it puts it in the packet...
e .. and then increments it

e Every router fracks largest sequence number seen from every other router
Would this be a problem if we used this protocol as an EGP?
e .. ifit sees an update with a smaller/equal sequence number...
e the update is old — drop it
e .. if it sees an update with a larger sequence number...
e the update is new — remember sequence number and flood update
to all other neighbors

Link-State: Flooding

e How to make flooding reliable?
e Can use our same old trick: periodically resend it
e |S-IS and OSPF both do this

e .. but do more clever stuff too
e .. delivers reliability faster without resending more often

e \We won’t explore this in detail in context of Link-State
e .. but we'll talk about reliability in more detail in week 6

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:

e Tell everyone about its neighbors (i.e., its links to them)

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:

e Tell everyone about its neighbors (i.e., its links to them)
e By flooding this information

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:

e Tell everyone else about any adjacent destinations

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:

e Tell everyone else about any adjacent destinations
e By flooding info about destinations too (e.g., static routes)

Link-State: Sharing Info Globally

Flood info about destinations (e.g., static
routes to hosts) using same flooding
mechanism you use to share info about

router topology (neighboring routers).

Hey, everyone!
| can reach A with cost of 2!

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:

e Tell everyone else about any adjacent destinations
e By flooding info about destinations too (e.g., static routes)

Link-State: Sharing Info Globally

e All routers need info about:
e All links between all routers
e All destinations

e Every router must:
e Find out who its neighbors are
e By exchanging hellos
e Tell everyone about its neighbors (i.e., its links to them)
e By flooding this information
e Tell everyone else about any adjacent destinations
e By flooding info about destinations too (e.g., static routes)

Link-State: Overview

e Every router:

e Gets the state of all links and location of all destinations
o

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph
e Using any pathfinding algorithm (e.g., Dijkstra’s)

e Uses the second hop in those paths to populate its forwarding table
e If every router chooses compatible paths, we're done!

Link-State: Overview

e Every router:
e Gets the state of all links and location of all destinations
e Via hellos and flooding

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph
e Using any pathfinding algorithm (e.g., Dijkstra’s)

e Uses the second hop in those paths to populate its forwarding table
e If every router chooses compatible paths, we're done!

Link-State: Overview

e Every router:
e Gets the state of all links and location of all destinations
e Via hellos and flooding

e Uses that global information to build full graph
e Just pastes all link/destination info together into a graph

e Finds paths from itself to every destination on graph
e Using any pathfinding algorithm (e.g., Dijkstra’s)

e Uses the second hop in those paths to populate its forwarding table
e If every router chooses compatible paths, we're done!

Questions?

Link-State: Convergence

e Using plain non-parallel Dijkstra’s algorithm (or whatever)
e Dijkstra’s will never find a looping path
e So we never have loops in Link-State protocols
e |s this true?

e |t's false!

e We only have control of our own next hop!
e If routers don’t have same global view of topology, all bets are off!
e For example:
e R1 doesn’t know about failure yet, sends packet to R3
e R3 gets packet, sends to to R1
e (Loop)

Link-State: Convergence

e Sources of convergence delay:
e Time to detect failure
e Time to flood link-state information (proportional to network diameter)
e Time to re-compute paths/tables

e Problems during convergence period:
e Deadends
e Looping packets
e Out-of-order packets reaching the destination
e Should not cause semantic problems
e But can create performance problems!
e (We'll see why later in semester)

Link-State: Timeline for Local Failure

e Failure not detected
e Packets sent into dead link (dropped)

e Detected, not recomputed
e Deadends

e Detected/computed, not globally notified/computed
e Could be loops

e As nodes become aware, routes may change
e Continued looping, and possible reorderings
e Why reordering?

Questions?

Link-State in a single slide

e Link state is super simple conceptually:
e Everyone floods link/destination information
e Everyone then has global map of network

e Everyone independently computes next hops

e .. all the complexity is in the details

Learning Switches
&
The Spanning Tree Protocol

Learning Switches

e We've been looking at Distance-Vector and Link-State protocols:
e Tables filled in by ongoing routing process
e Are “seeded” with static routes for destinations
e \ery common for routing at the network layer (L3)
e i.e., using IP addresses

e Let's look at a very different approach to filling in our tables!

e Learning switches:
e Tables filled in opportunistically using data packets
e No “seeding” with static entries required!
e \Very common for routing at the link layer (L2)
e Many people would say it is not routing, but if it looks like a duck, quacks like a
duck, and fills in forwarding tables like a duck... &
e (I may be messing up this metaphor.)

Learning Switches

O S
m Nxt
[ca |
S2 S3
O=1I —
[s |
S4 | S5 |

A sending o
packet to B 2

Learning Switches

O S
m Nxt
A A
S2 | S3 |
O=1I —
[s |
S4 | S5 |

A sending o
packet to B 2

Learning Switches

A sending
packet to B

=T
A S1

[ca |
S2 | S3 |
[s |
S4 | S5 |
m Nxt m Nxt
A S1

Learning Switches

o | e

A A

O—F

A sending
packet to B

S2

Learning Switches

o | e

A A

O—F

A sending
packet to B

S2

Learning Switches

B gets
0w | e the packet

A A

O—F

Learning Switches

| ost | mt | ost | et B replies
A S1 A S2

0w | e to A
= 5=
S2 S3 B
O—F
[ss—)
S4 S5 C

o
A S1 A S4

Learning Switches

| ost | mt | ost | et B replies
A S1 A S2

to A

®

o | e

A A

— 1 «
—AS2 Is_3I
OauE

IS_I

stf——s5——(©)

o
A S1 A S4

Learning Switches
| ost | mt | ost | et B replies

A S1 A S2
m Nt B S3 B B

A A

to A

e el ——l5l—0)
= |
@‘ S1

o
A S1 A S4

Learning Switches

=T
A S1 A S2

Next packet to
B follows
efficient path

Learning Switches

=T
A S1 A S2

What's the big
problem here?

Learning Switches

e Major problem with learning switches:
e Floods when destination is unknown
e .. floods have problems when topology has loops

e Our previous solution doesn’t work in this case
e .. we’ll come back to this in just a second

Learning Switches

e Note: the decision to flood is done on a switch-by-switch basis...
e Packets are not purely flooded or purely point-to-point throughout their lifetimes
e Instead, at each switch, packets are:

e Sent out correct port if table entry exists
e Flooded out all ports (except incoming) if not

Learning Switches: Pseudocode-Style

on arrival of from neighbor

L : 1. = previous_hop
i : 1. = five_minutes

Learning Switches

e Major problem with learning switches:
e Floods when destination is unknown
e .. floods have problems when topology has loops

e Our previous solution doesn’t work in this case

To Be Continued...

Poison Reverse vs. Route Poisoning

Poison Reverse vs. Route Poisoning

e Poison reverse is just split horizon taken up a notch
o Try to prevent your next hop from using you as a next hop
o Done using a special case in your route advertisement code

Nnd Poison

Split Horizon @

Split Horizon and Poison Reverse

oo

.
.
.
.

Best paths to A

Split Horizon and Poison Reverse

Advertisements from switch 1 with no split horizon or poison reverse

Split Horizon and Poison Reverse

nenad 8

LT

No jadvertisement T,
to next hop

D

‘ 5 enmnmnnn

Advertisements from switch 1 with split horizon

Split Horizon and Poison Reverse

nenad 8

LT

.
.
L

Infinite (poison) ...
advertisement '

»
o
. 5 CLLL

Advertisements from switch 1 with poison reverse

Split Horizon and Poison Reverse

All advertisements from all switches not sent due to split horizon

Split Horizon and Poison Reverse

All poison reverse advertisements from all switches

Split Horizon and Poison Reverse

Best paths again -- note the relationship to SH / PR advertisements!

Split Horizon and Poison Reverse

e Split horizon:

e Don’t send advertisement to your next hop
e Poison reverse:

e Send infinite advertisement to your next hop

e Both intended to prevent your next hop from using you as their next hop
e It wouldn't make any sense!
e \Why would this ever happen?
e See examples in lecture, discussion, project...

Poison Reverse vs. Route Poisoning

e Poison reverse is just split horizon taken up a notch
o Try to prevent your next hop from using you as a next hop
o Done using a special case in your route advertisement code

Poison Reverse vs. Route Poisoning

e Poisoning is about actively telling neighbors about non-routes
o Don’t just wait for them to time out...
o Tell them you are infinitely far away from destination
o Uses normal advertisement code
m Actually put an infinite route in your table and it mostly “just works”

Route Poisoning

20

4)

(—{r1}[ReHrsHreHrs Hre}Hrr

+ With no poisoning, route through R1 will have to expire on each switch consecutively before
R7 will accept the alternate route.
» This can take as long as like six expiration intervals, and triggered updates don’t help!

« With poisoning, when R2 notices the link go down (either directly or via timeout), it changes
distance of route using R1 to infinity (poison).

« This takes more like six advertisements to reach R7! Even with only periodic advertisements,
this is likely a big savings. With triggered updates, it can be huge!

Poison Reverse vs. Route Poisoning

e Poison reverse is just split horizon taken up a notch
o Try to prevent your next hop from using you as a next hop
o Done using a special case in your route advertisement code

e Poisoning is about actively telling neighbors about non-routes
o Don’t just wait for them to time out...
o Tell them you are infinitely far away from destination
o Uses normal advertisement code
m Actually put an infinite route in your table and it mostly “just works”

Poison Reverse vs. Route Poisoning

e Poison reverse is just split horizon taken up a notch
o Try to prevent your next hop from using you as a next hop
o Done using a special case in your route advertisement code

e Poisoning is about actively telling neighbors about non-routes
o Don’t just wait for them to time out...
o Tell them you are infinitely far away from destination
o Uses normal advertisement code
m Actually put an infinite route in your table and it mostly “just works”

e Note: Receiver of «» advertisement can’t tell the difference between them!
o Just knows not to use sender as part of its path!

