
Routing #4 and Addressing

Today in CS168

• Finishing up Learning Switches & Spanning Tree Protocol

• Addressing

Learning Switches
&

The Spanning Tree Protocol

Learning Switches

● We’d been looking at Distance-Vector and Link-State protocols:
● Tables filled in by ongoing routing process
● Are “seeded” with static routes for destinations
● Very common for routing at the network layer (L3)

● i.e., using IP addresses

● And now a very different approach to filling in our tables!

● Learning switches:
● Tables filled in opportunistically using data packets
● No “seeding” with static entries required!
● Very common for routing at the link layer (L2)

● Many people would say this isn’t routing
● But it fills in tables to get packets from source to destination, so…

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

S4

Dst Nxt Dst Nxt

Dst Nxt Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt Dst Nxt

Dst Nxt Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

Dst Nxt

A S1

Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst NxtA sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

A sending
packet to B

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

B gets
the packet

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

B replies
to A

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

S4

Dst Nxt

A S1

Dst Nxt

A S2

Dst Nxt

A S1

Dst Nxt

A S4

B replies
to A

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

B S2

S4

Dst Nxt

A S1

B S3

Dst Nxt

A S2

B B

Dst Nxt

A S1

Dst Nxt

A S4

B replies
to A

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

B S2

S4

Dst Nxt

A S1

B S3

Dst Nxt

A S2

B B

Dst Nxt

A S1

Dst Nxt

A S4

Next packet to
B follows

efficient path

Learning Switches

A

BS2 S3

CS5

S1

Dst Nxt

A A

B S2

S4

Dst Nxt

A S1

B S3

Dst Nxt

A S2

B B

Dst Nxt

A S1

Dst Nxt

A S4

What’s the big
problem here?

Bad news!

Learning Switches

● Major problem with learning switches:
● Floods when destination is unknown
● .. floods have problems when topology has loops

● Our previous solution doesn’t work in this case
● .. we’ll come back to this in just a second

Learning Switches

● Note: the decision to flood is done on a switch-by-switch basis…

● Packets are not purely flooded or purely point-to-point throughout their lifetimes

● Instead, at each switch, packets are:
● Sent out correct port if table entry exists
● Flooded out all ports (except incoming) if not

Learning Switches: Pseudocode-Style

on arrival of packet from neighbor previous_hop:
 # Learn
 table[packet.source].next_hop = previous_hop
 table[packet.source].ttl = five_minutes

 # Forward
 if packet.destination in table:
 next_hop = table[packet.destination].next_hop
 if next_hop == previous_hop:
 packet.drop() # why?
 else:
 packet.forward_to(next_hop)
 else: # destination not in table
 packet.flood_to_neighbors(except=previous_hop)

Learning Switches

● Major problem with learning switches:
● Floods when destination is unknown
● .. floods have problems when topology has loops

● Our previous solution doesn’t work in this case

Learning Switches

● Major problem with learning switches:
● Floods when destination is unknown
● .. floods have problems when topology has loops

● Our previous solution doesn’t work in this case
● Old solution kept state for each sender (the highest sequence number)

● Worked okay for number of internal routers in a network…
● .. but probably does not scale to number of hosts on Internet!
● .. and data packets don’t necessary have a sequence number anyway!

● New solution:
● Disable links until there are no loops (make it into a spanning tree)!

Spanning Tree Protocol

● How do you make a spanning tree from an arbitrary network?

● Step 1: Find least cost paths from every switch to the root

● Step 2: Disable data delivery on every link not on a path to root

● Step 3: When the tree breaks (a link on it fails), start over

Spanning Tree Protocol: Step 1 (Paths to root)

● Step 1: Find least cost paths from every switch to the root

● Wait; do we already have an algorithm/protocol that does this?

● Spoiler alert: Step 1 of STP is basically D-V with a single table entry/destination
● No split horizon or poison reverse

● The “destination” is the switch at the root of the tree

● Every switch has a unique, orderable ID (based on Ethernet address)

● We simultaneously work to find:
● The root (switch with lowest ID)
● The best path to the root (lowest cost)

Spanning Tree Protocol: Step 1 (Paths to root)

● All switches begin by thinking they are the root
● Advertises “route” to itself (“The root is my_id and I can reach it in zero hops”)

● Compare distances like (distance, next_hop_id) (i.e., using id to break ties)

● On receiving a “route” (STP message) from a neighbor:
● First, compare the advertised root ID to what we think root ID is…
● If it’s smaller than current, it is a better root: use it as root
● If it’s larger than current, it is a worse root: ignore it
● If it’s the same: Basically normal D-V update rules (minimize distance)

● Except: Break ties by preferring next hop with smaller ID as shown above!
● .. and send triggered update if your own state changes

● Only generate periodic advertisements if you think you’re the root
● Other nodes just forward advertisements to neighbors farther than they are

Spanning Tree Protocol: Step 2 (Disable links)

● Step 2: Disable data delivery on every link not on a shortest path to root

● Remember: A neighbor is either closer to root or farther from root than you
● No distance ties — broken using unique IDs

● Each switch:

● Enables the link along the best path to the root

● Disables every other link to a neighbor closer to the root

● Lets the further-away neighbors decide the rest!

● (Also enables all links to hosts!)

Spanning Tree Protocol: Step 2 (Disable links)

● Step 2: Disable data delivery on every link not on a shortest path to root

● Wait; why is this so complicated?
● Maybe it’s not as easy as you think…

● A switch knows which link is part of its own shortest path to the root
● Definitely enable that one!

● .. but how does it know which of its links are part of another
switch’s path to root?
● It better not disable those!
● .. how does S4 know if it is on S3’s best path?

● Observations:
● If neighbor is closer to root than I am, I can’t be on its shortest path
● If neighbor is farther from root than I am, I might be on its shortest path
● You know everyone’s distance from the root along the tree because

that’s what the advertisements tell you!

S2 S4

S1

S3

Lowest ID — the root!

Spanning Tree Protocol: Step 2 (Disable links)

● Observations:
● If neighbor is closer to root than I am, I can’t be on its shortest path
● If neighbor is farther from root than I am, I might be on its shortest path

● e.g., again, S4 doesn’t know if it is on S3’s best path
● You know everyone’s distance from the root along the tree because

that’s what the advertisements tell you!

● Strategy:
● Enable link along your best path to root
● Disable other links to switches closer to root than you

● .. they’re not on your best path
● .. and you can’t possibly be on theirs (you're father!)

● Leave other links for other switches to decide
● .. they’re all farther from root than you are
● .. so you're closer than they are
● .. so the above enable/disable rules work for them

S2 S4

S1

S3

Lowest ID — the root!

Spanning Tree Protocol: Step 2 (Disable links)

● Strategy:
● Enable link along your best path to root
● Disable other links to switches closer to root than you

● .. they’re not on your best path
● .. and you can’t possibly be on theirs

● Leave other links for other switches to decide
● .. they’re all farther from root than you are
● .. so you're closer than they are
● .. so the above enable/disable rules work for them

● .. but what about switches of equal distance? (e.g., S2 & S4)
● Can’t possibly be on each other’s shortest paths
● .. but only one should determine link enable/disable
● .. so break distance ties using switch ID
● .. S4 & S2 are both distance 1 from root… break tie with ID…

S4 has bigger ID so it's “farther”… so it decides for S2—S4 link

S2 S4

S1

S3

Lowest ID — the root!

Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● Gray dashed links unknown
● Black links enabled
● Red messy links disabled

● S1 is the root

● Assume all switches have
completed step 1 already
(“next hops” shown here)

Lowest ID — the root!

Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● Gray dashed links unknown
● Black links enabled
● Red messy links disabled

● S1 is the root

● Assume all switches have
completed step 1 already

Lowest ID — the root!

Enabled: Link on best path to root
Disabled: Links to other neighbors “closer” to root
Unknown: Links to neighbors “farther” from root

Remember: Break distance ties using IDs!

Spanning Tree Protocol: Step 2 Example

S4

S1

S3

● S1’s Perspective

● S1-S2: Unknown
● S1-S4: Unknown

Lowest ID — the root!

? ?

S2

Enabled: Link on best path to root
Disabled: Links to other neighbors “closer” to root
Unknown: Links to neighbors “farther” from root

Remember: Break distance ties using IDs!

Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● S2’s Perspective

● S2-S1: Enabled
● S2-S3: Unknown
● S2-S4: Unknown

Lowest ID — the root!

?

?

?

Enabled: Link on best path to root
Disabled: Links to other neighbors “closer” to root
Unknown: Links to neighbors “farther” from root

Remember: Break distance ties using IDs!

S4’s is same distance,
but higher ID — it is
“farther” from root

Enabled: Link on best path to root
Disabled: Links to other neighbors “closer” to root
Unknown: Links to neighbors “farther” from root

Remember: Break distance ties using IDs!

Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● S3’s Perspective

● S3-S2: Enabled
● S2-S4: Disabled

Lowest ID — the root!

S4 is closer than we
are, but not on shortest

path — disable!? ?
S2 is “closer” to root

than S4
(same actual distance,
but lower ID breaks tie)

Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● S4’s Perspective

● S4-S1: Enabled
● S4-S3: Unknown (leave alone)
● S4-S2: Disabled

Lowest ID — the root!

S2 is “closer”
(same actual distance,

but smaller ID)

?

?

?

Enabled: Link on best path to root
Disabled: Links to other neighbors “closer” to root
Unknown: Links to neighbors “farther” from root

Remember: Break distance ties using IDs!

Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● We’ve got a spanning tree!

● .. and it matches the next hops
each switch came up with!

Lowest ID — the root!

Enabled: Link on best path to root
Disabled: Links to other neighbors “closer” to root
Unknown: Links to neighbors “farther” from root

Remember: Break distance ties using IDs!

Spanning Tree Protocol: Step 2 (Disable links)

● Step 2 Recap…

● No ties when comparing distance — break ties using switch IDs

● Each switch:

● Enables the link along the best path to the root (and all links to hosts!)

● Disables every other link to a neighbor closer to the root

● Lets the further-away neighbors decide the rest!

● .. in this way, a switch closer doesn’t disable a link needed by a switch that’s farther
● .. doesn't require explicit coordination (no need to ask, “do you need this link?”)
● .. exactly one switch responsible for enabling/disabling each link

Spanning Tree Protocol: Step 3

● Step 3: When the tree breaks (a link on it fails), start over

● If “route” expires, pretend you’re the root again

● You’ll (hopefully) get messages from neighbors

● You’ll all sort out new links and possibly a new root!

STP & Learning Switches: Summary

● STP is basically distance-vector at its core

● .. except you are always only figuring out the route to the root (lowest ID switch)
● (A single tree, not a single tree per destination!)

● .. and you don’t use the “routes” for forwarding directly
● .. instead, disable links between switches which aren’t on a shortest path to root

● After disabling links, topology is logically a tree
● .. learning switches can flood freely on that tree
● .. and you can learn table entries from data packets moving along tree

STP & Learning Switches: Summary

● Only used in local (layer 2) networks
● Bandwidth is plentiful, number of nodes relatively small
● So flooding is feasible

● Flooding lets you reach destinations even without routing information
● You don’t need table entries (static or from routing protocol)
● (But they’re nice!)

● Flooding can “find” hosts
● No need for static routes

● Once a switch has seen a packet from a host, it has a table entry for it
● If all switches see packet from host, no more need to flood when it is destination

Questions?

A Final Thing about STP

Algoryhme by Radia Perlman

I think that I shall never see
A graph more lovely than a tree.

A tree whose crucial property
is loop-free connectivity.

A tree that must be sure to span
so packets can reach every LAN.

First, the root must be selected.
By ID, it is elected.

Least-cost paths from root are traced.
In the tree, these paths are placed.

A mesh is made by folks like me,
Then bridges find a spanning tree.

LAN ≈ L2 network (Local Access Network)

mesh ≈ a graph with high degree of connectivity
bridge ≈ switch

See Also
“Trees”

by American poet Joyce Kilmer
1913

Addressing
(and a bit of IGP/EGP interplay)

Addressing

● How do routing and forwarding scale to the size of the Internet?!

● Can I really have a table entry for every host?
● How long would it take for D-V to converge this distributed algorithm when

you have propagation delays brought about by the speed of light?
● Can a L-S router really build/maintain a graph for the entire Internet?

● I’ve mentioned that intradomain & interdomain routing use different protocols
● We’ve mostly talked about intra so far (IGPs); inter next week (BGP the EGP)
● .. maybe the magic of scaling shows up in the interdomain routing protocols?

● Actually, the scaling is mostly about addressing

Addressing

● IP addresses are part of what makes IP scalable
● We’ll focus on IPv4 addresses

● IPv6 is pretty similar; we don’t focus too much on it in this class

● Without talking about details of BGP, I will also touch on how intradomain and
interdomain routing protocols interact

● I am not going to talk about Layer 2 addresses today (Ethernet addresses)
● They work differently; probably better name would be Ethernet identifiers
● They don’t need to scale as much (though bigger than people thought…)
● They’ll probably come up later in the semester

Addressing: Early Internet

● Remember, the Internet is a network or networks

Cloud Provider

National ISP

Regional
ISP

University

● Remember, the Internet is a network or networks
● Leads naturally to a two level hierarchy
● .. and hierarchy is one of the major tools to address scaling!

● Could imagine hierarchical
addressing scheme…

● Hosts have identifiers
● Networks have identifiers

● Address is like: Network.Host
● This could be 3.7

Addressing: Early Internet

3

2

1

4

● Routing between domains only concerned with network part

● Interdomain routing protocol
only deals with four nodes!

● Limits table size & routing state
● Limits churn

● Links added/failed inside
domains generally has
no effect; require no messages

● Big scalability improvement assuming
many more hosts than networks (seems fair!)

3

2

1

4

Hierarchical Addressing Implications
Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…

R9 R6

R8

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

● Internal routers need routes for all hosts in same network…
● Scales with number of hosts in single network

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…
3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

● Internal routers need routes for all hosts in same network…
● Scales with number of hosts in single network

● .. and routes for other networks

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…
3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

1.* ?

2.* ?

4.* ?

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

● Internal routers need routes for all hosts in same network…
● Scales with number of hosts in single network

● .. and routes for other networks

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…
3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

1.* R9

2.* R9

4.* R9

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

● Internal routers need routes for all hosts in same network…
● Scales with number of hosts in single network

● .. and routes for other networks

● So total state scales with number
of hosts in this network plus
number of other networks

● Again: big scalability improvement
assuming many more hosts than
networks!

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…
3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

1.* R9

2.* R9

4.* R9

Hierarchical Addressing Implications

4

5

6

3
2

7

1

R3R2

R5

R4

R1

R9
To R6

To R8

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8

4.* R6

…
3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

. R9

Sidenote: You don’t even need individual network
routes in all the internal routers.

Since we only have one way to get to anywhere else
in this network, we could just have a default route.

● Note that addresses aren’t assigned randomly!
● Hosts that are “close to each other” (in some sense) share part of their address
● We leverage this structure to make routing (and forwarding) scale better

● We use structured addresses like this all the time!
● Soda Hall #417 is much easier to work with than if we just numbered every office

in the world uniquely…

● This also explains why hosts don’t generally participate in routing protocols…
● A human decided how to divide up the network in a way that makes sense
● Your computer doesn’t have its own IP address wherever it goes…
● .. it changes it address depending on where it is
● .. it “moves in” to the network where it’s attached (and gets a new address there)

Hierarchical Addressing Implications

Hierarchical Addressing Implications Recap

● Assuming addresses have two parts: Network.Host

● Border routers running EGPs figure out routes between networks

● Internal routers running IGPs figure out host routes for hosts in that network
.. and may propagate the network routes from the EGP (it's one way to do it)

● Scales much better than “flat” routing:
● Border routers don’t see churn inside networks
● Internal routers don’t see churn in other networks
● Routers only need state for:

● Hosts in their network
● And other networks themselves

● So that’s basically how addresses worked on early Internet

● An IPv4 address is 32 bits long
● Each host gets a unique one (or more than one, and with caveats)

● Was broken into:
● Network part (8 bits)
● Host part (24 bits)

● When an organization wanted to get on the Internet, they’d get their own
network part.
● e.g., Apple was (and is still) 17…

Addressing: Early Internet

Still true

Different today; we’ll discuss…

IPv4 Addresses

● You could just represent an IPv4 address as a single big integer
● But far more common is a dotted quad or dot quad

00010001 00100010 10011110 00000101

17 34 158 5

17.34.158.5

Network Part

(or 17.2268677)

IPv4 Address Evolution

● 8 bit network part

● .. at most 256 networks

● .. this probably seemed like enough at the time

● .. boy were they ever wrong

● Became clear we needed more networks
● Solution:

● “Classful” addressing

Classful Addressing

network host 0

0 8
126 nets

~16M hostsClass A

network host 1
160

0 ~16K nets
~65K hostsClass B

~2M nets
254 hosts

network host 1
240

1 0Class C

● Three main classes of network

Classful Addressing

● Ran into problems of its own!

● The sizes of the classes weren’t that useful
● Class A far too big for most organizations!
● Class C far too small for many organizations!
● Class B is best option for many

● Still too big for many organizations
● Not that many of them!

● Running out of Class B? That’s a lot of routes…
● Number of interdomain routes was going up!

126 nets
~16M hostsClass A

~16K nets
~65K hostsClass B

~2M nets
254 hostsClass C

Classful Addressing

1989 1990 1991 1992 1993 1994

20,000

10,000

15,000

5,000

● Number of interdomain routes by year (approximate)

CIDR: Classless Inter-Domain Routing

● So they needed a new solution: CIDR

● Classless Inter-Domain Routing

● Still what we use today

● In a nutshell:

● Introduces a hierarchical process for assignment of addresses

● Gives up simple notion of “network part” and “host part” of fixed sizes

CIDR: Hierarchical address assignment

● ICANN (Internet Corporation for Assigned Names and Numbers)
● .. gives out large contiguous blocks of the old Class C addresses to …

● RIRs (Regional Internet Registries)
● (ARIN, AFRINIC, APNIC, LACNIC, RIPE NCC)
● .. who give out portions of those blocks to …

● Large organizations
● (e.g., ISPs like AT&T)
● .. who give our portions of those blocks to …

● Smaller organizations and individuals
● (e.g., UC Berkeley)

CIDR: Hierarchical assignment example (Fake!)

● ICANN wants ARIN to have 500M addresses
● Requires 28 bits
● ICANN picks 4 bit prefix
● Assigns it to ARIN (4 + 28 = 32)

● ARIN allocates 8M of its addresses to AT&T
● Requires 23 bits
● ARIN picks next 5 bits of prefix
● Assigns it to AT&T (4 + 5 + 23 = 32)

● AT&T allocates 16K addresses to UC Berkeley
● Requires 14 bits
● AT&T picks next 9 bits of prefix
● Assigns it to UCB (4 + 5 + 9 + 14 = 32)

● UCB …
● Now has its own block with prefix of 18 bits
● Remaining 14 bits are for its hosts

 1101

 110111001

 110111001110100010

 110111001110100010xxxxxxxxxxxxxx

Prefix

CIDR: Hierarchical assignment example (Fake!)

● ICANN wants ARIN to have 500M addresses
● Requires 28 bits
● ICANN picks 4 bit prefix
● Assigns it to ARIN (4 + 28 = 32)

● ARIN allocates 8M of its addresses to AT&T
● Requires 23 bits
● ARIN picks next 5 bits of prefix
● Assigns it to AT&T (4 + 5 + 23 = 32)

● AT&T allocates 16K addresses to UC Berkeley
● Requires 14 bits
● AT&T picks next 9 bits of prefix
● Assigns it to UCB (4 + 5 + 9 + 14 = 32)

● UCB …
● Now has its own block with prefix of 18 bits
● Remaining 14 bits are for its hosts

 11010000000000000000000000000000 = 208.0.0.0

 11011100100000000000000000000000 = 220.128.0.0

 11011100111010001000000000000000 = 220.232.128.0

 110111001110100010xxxxxxxxxxxxxx

Prefix

CIDR: Hierarchical assignment example (Fake!)

● ICANN wants ARIN to have 500M addresses
● Requires 28 bits
● ICANN picks 4 bit prefix
● Assigns it to ARIN (4 + 28 = 32)

● ARIN allocates 8M of its addresses to AT&T
● Requires 23 bits
● ARIN picks next 5 bits of prefix
● Assigns it to AT&T (4 + 5 + 23 = 32)

● AT&T allocates 16K addresses to UC Berkeley
● Requires 14 bits
● AT&T picks next 9 bits of prefix
● Assigns it to UCB (4 + 5 + 9 + 14 = 32)

● UCB …
● Now has its own block with prefix of 18 bits
● Remaining 14 bits are for its hosts

 11010000000000000000000000000000 = 208.0.0.0/4

 11011100100000000000000000000000 = 220.128.0.0/9

 11011100111010001000000000000000 = 220.232.128.0/18

 110111001110100010xxxxxxxxxxxxxx

Prefix

CIDR “slash notation”

Netmasks: Another representation of prefixes

● Besides “slash notation”, there is netmask notation
● Totally equivalent, just a different way of writing it
● A bitmask of the prefix bits
● Just turn the prefix bits to 1 and convert to dot quad

 11010000000000000000000000000000 = 208.0.0.0

 11011111100000000000000000000000 = 220.128.0.0

 11011100111010001000000000000000 = 220.232.128.0

 11110000000000000000000000000000 = 240.0.0.0

 11111111100000000000000000000000 = 255.128.0.0

 11111111111111111100000000000000 = 255.255.192.0

 /240.0.0.0

 /255.128.0.0

 /255.255.192.0

CIDR: Classless Inter-Domain Routing

● Back to the problems CIDR was trying to solve…

● #1: Classful was wasteful

● Like our example, Berkeley wanted ~16K addresses
● Would have needed a Class B, which has ~65K address
● .. the other ~50K addresses wasted!

● With CIDR, blocks are at worst about twice as big as needed
● .. if you want 254 addresses, you can get a /8 — no waste
● .. if you want 255 addresses, you need a /9 — wastes 255!
● (the first last address in a block is reserved, hence 254, not 256)

CIDR: Classless Inter-Domain Routing

● Back to the problems CIDR was trying to solve…

● #2: Number of interdomain routes was going up

To Be Continued…

Attributions

Radia Perlman, Public Domain
https://commons.wikimedia.org/wiki/File:Radia_Perlman_2009.jpg

