
Routing #4 and Addressing



Today in CS168

• Finishing up Learning Switches & Spanning Tree Protocol  

• Addressing



Learning Switches 
& 

The Spanning Tree Protocol



Learning Switches

● We’d been looking at Distance-Vector and Link-State protocols: 
● Tables filled in by ongoing routing process 
● Are “seeded” with static routes for destinations 
● Very common for routing at the network layer (L3) 

● i.e., using IP addresses 

● And now a very different approach to filling in our tables! 

● Learning switches: 
● Tables filled in opportunistically using data packets 
● No “seeding” with static entries required! 
● Very common for routing at the link layer (L2) 

● Many people would say this isn’t routing 
● But it fills in tables to get packets from source to destination, so…
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Learning Switches

● Major problem with learning switches: 
● Floods when destination is unknown 
● .. floods have problems when topology has loops 

● Our previous solution doesn’t work in this case 
● .. we’ll come back to this in just a second



Learning Switches

● Note: the decision to flood is done on a switch-by-switch basis… 

● Packets are not purely flooded or purely point-to-point throughout their lifetimes 

● Instead, at each switch, packets are: 
● Sent out correct port if table entry exists 
● Flooded out all ports (except incoming) if not



Learning Switches: Pseudocode-Style

on arrival of packet from neighbor previous_hop: 
    # Learn 
    table[packet.source].next_hop = previous_hop 
    table[packet.source].ttl = five_minutes 

    # Forward 
    if packet.destination in table: 
        next_hop = table[packet.destination].next_hop 
        if next_hop == previous_hop: 
            packet.drop() # why? 
        else: 
            packet.forward_to(next_hop) 
    else: # destination not in table 
        packet.flood_to_neighbors(except=previous_hop)
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Learning Switches

● Major problem with learning switches: 
● Floods when destination is unknown 
● .. floods have problems when topology has loops 

● Our previous solution doesn’t work in this case 
● Old solution kept state for each sender (the highest sequence number) 

● Worked okay for number of internal routers in a network… 
● .. but probably does not scale to number of hosts on Internet! 
● .. and data packets don’t necessary have a sequence number anyway! 

● New solution: 
● Disable links until there are no loops (make it into a spanning tree)!



Spanning Tree Protocol

● How do you make a spanning tree from an arbitrary network? 

● Step 1: Find least cost paths from every switch to the root 
 

● Step 2: Disable data delivery on every link not on a path to root 
 

● Step 3: When the tree breaks (a link on it fails), start over 



Spanning Tree Protocol: Step 1 (Paths to root)

● Step 1: Find least cost paths from every switch to the root 

● Wait; do we already have an algorithm/protocol that does this? 

● Spoiler alert: Step 1 of STP is basically D-V with a single table entry/destination 
● No split horizon or poison reverse 

● The “destination” is the switch at the root of the tree 

● Every switch has a unique, orderable ID (based on Ethernet address) 

● We simultaneously work to find: 
● The root (switch with lowest ID) 
● The best path to the root (lowest cost)



Spanning Tree Protocol: Step 1 (Paths to root)

● All switches begin by thinking they are the root 
● Advertises “route” to itself (“The root is my_id and I can reach it in zero hops”) 

● Compare distances like (distance, next_hop_id) (i.e., using id to break ties) 

● On receiving a “route” (STP message) from a neighbor: 
● First, compare the advertised root ID to what we think root ID is… 
● If it’s smaller than current, it is a better root: use it as root 
● If it’s larger than current, it is a worse root: ignore it 
● If it’s the same: Basically normal D-V update rules (minimize distance) 

● Except: Break ties by preferring next hop with smaller ID as shown above! 
● .. and send triggered update if your own state changes 

● Only generate periodic advertisements if you think you’re the root 
● Other nodes just forward advertisements to neighbors farther than they are



Spanning Tree Protocol: Step 2 (Disable links)

● Step 2: Disable data delivery on every link not on a shortest path to root 

● Remember: A neighbor is either closer to root or farther from root than you 
● No distance ties — broken using unique IDs 

● Each switch: 

● Enables the link along the best path to the root 

● Disables every other link to a neighbor closer to the root  

● Lets the further-away neighbors decide the rest! 

● (Also enables all links to hosts!)



Spanning Tree Protocol: Step 2 (Disable links)

● Step 2: Disable data delivery on every link not on a shortest path to root 

● Wait; why is this so complicated? 
● Maybe it’s not as easy as you think… 

● A switch knows which link is part of its own shortest path to the root 
● Definitely enable that one! 

● .. but how does it know which of its links are part of another 
switch’s path to root? 
● It better not disable those! 
● .. how does S4 know if it is on S3’s best path? 

● Observations: 
● If neighbor is closer to root than I am, I can’t be on its shortest path 
● If neighbor is farther from root than I am, I might be on its shortest path 
● You know everyone’s distance from the root along the tree because 

that’s what the advertisements tell you!

S2 S4

S1

S3

Lowest ID — the root!



Spanning Tree Protocol: Step 2 (Disable links)

● Observations: 
● If neighbor is closer to root than I am, I can’t be on its shortest path 
● If neighbor is farther from root than I am, I might be on its shortest path 

● e.g., again, S4 doesn’t know if it is on S3’s best path 
● You know everyone’s distance from the root along the tree because 

that’s what the advertisements tell you! 

● Strategy: 
● Enable link along your best path to root 
● Disable other links to switches closer to root than you 

● .. they’re not on your best path 
● .. and you can’t possibly be on theirs (you're father!) 

● Leave other links for other switches to decide 
● .. they’re all farther from root than you are 
● .. so you're closer than they are 
● .. so the above enable/disable rules work for them

S2 S4

S1

S3

Lowest ID — the root!



Spanning Tree Protocol: Step 2 (Disable links)

● Strategy: 
● Enable link along your best path to root 
● Disable other links to switches closer to root than you 

● .. they’re not on your best path 
● .. and you can’t possibly be on theirs 

● Leave other links for other switches to decide 
● .. they’re all farther from root than you are 
● .. so you're closer than they are 
● .. so the above enable/disable rules work for them 

● .. but what about switches of equal distance? (e.g., S2 & S4) 
● Can’t possibly be on each other’s shortest paths 
● .. but only one should determine link enable/disable 
● .. so break distance ties using switch ID 
● .. S4 & S2 are both distance 1 from root… break tie with ID… 

S4 has bigger ID so it's “farther”… so it decides for S2—S4 link

S2 S4

S1

S3

Lowest ID — the root!



Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● Gray dashed links unknown 
● Black links enabled 
● Red messy links disabled 

● S1 is the root 

● Assume all switches have 
completed step 1 already 
(“next hops” shown here)

Lowest ID — the root!



Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● Gray dashed links unknown 
● Black links enabled 
● Red messy links disabled 

● S1 is the root 

● Assume all switches have 
completed step 1 already

Lowest ID — the root!

Enabled: Link on best path to root 
Disabled: Links to other neighbors “closer” to root 
Unknown: Links to neighbors “farther” from root 

Remember: Break distance ties using IDs!



Spanning Tree Protocol: Step 2 Example

S4
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● S1’s Perspective 

● S1-S2: Unknown 
● S1-S4: Unknown

Lowest ID — the root!

? ?

S2

Enabled: Link on best path to root 
Disabled: Links to other neighbors “closer” to root 
Unknown: Links to neighbors “farther” from root 

Remember: Break distance ties using IDs!



Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● S2’s Perspective 

● S2-S1: Enabled 
● S2-S3: Unknown 
● S2-S4: Unknown

Lowest ID — the root!

?

?

?

Enabled: Link on best path to root 
Disabled: Links to other neighbors “closer” to root 
Unknown: Links to neighbors “farther” from root 

Remember: Break distance ties using IDs!

S4’s is same distance, 
but higher ID — it is 
“farther” from root



Enabled: Link on best path to root 
Disabled: Links to other neighbors “closer” to root 
Unknown: Links to neighbors “farther” from root 

Remember: Break distance ties using IDs!

Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● S3’s Perspective 

● S3-S2: Enabled 
● S2-S4: Disabled

Lowest ID — the root!

S4 is closer than we 
are, but not on shortest 

path — disable!? ?
S2 is “closer” to root 

than S4 
(same actual distance, 
but lower ID breaks tie)



Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● S4’s Perspective 

● S4-S1: Enabled 
● S4-S3: Unknown (leave alone) 
● S4-S2: Disabled

Lowest ID — the root!

S2 is “closer” 
(same actual distance, 

but smaller ID)

?

?

?

Enabled: Link on best path to root 
Disabled: Links to other neighbors “closer” to root 
Unknown: Links to neighbors “farther” from root 

Remember: Break distance ties using IDs!



Spanning Tree Protocol: Step 2 Example

S2 S4

S1

S3

● We’ve got a spanning tree! 

● .. and it matches the next hops 
each switch came up with!

Lowest ID — the root!

Enabled: Link on best path to root 
Disabled: Links to other neighbors “closer” to root 
Unknown: Links to neighbors “farther” from root 

Remember: Break distance ties using IDs!



Spanning Tree Protocol: Step 2 (Disable links)

● Step 2 Recap… 

● No ties when comparing distance — break ties using switch IDs 

● Each switch: 

● Enables the link along the best path to the root (and all links to hosts!) 

● Disables every other link to a neighbor closer to the root  

● Lets the further-away neighbors decide the rest! 

● .. in this way, a switch closer doesn’t disable a link needed by a switch that’s farther  
● .. doesn't require explicit coordination (no need to ask, “do you need this link?”) 
● .. exactly one switch responsible for enabling/disabling each link



Spanning Tree Protocol: Step 3

● Step 3: When the tree breaks (a link on it fails), start over 

● If “route” expires, pretend you’re the root again 

● You’ll (hopefully) get messages from neighbors 

● You’ll all sort out new links and possibly a new root!



STP & Learning Switches: Summary

● STP is basically distance-vector at its core 

● .. except you are always only figuring out the route to the root (lowest ID switch) 
● (A single tree, not a single tree per destination!) 

● .. and you don’t use the “routes” for forwarding directly 
● .. instead, disable links between switches which aren’t on a shortest path to root 

● After disabling links, topology is logically a tree 
● .. learning switches can flood freely on that tree 
● .. and you can learn table entries from data packets moving along tree



STP & Learning Switches: Summary

● Only used in local (layer 2) networks 
● Bandwidth is plentiful, number of nodes relatively small 
● So flooding is feasible 

● Flooding lets you reach destinations even without routing information 
● You don’t need table entries (static or from routing protocol) 
● (But they’re nice!) 

● Flooding can “find” hosts 
● No need for static routes 

● Once a switch has seen a packet from a host, it has a table entry for it 
● If all switches see packet from host, no more need to flood when it is destination



Questions?



A Final Thing about STP



Algoryhme by Radia Perlman

I think that I shall never see 
A graph more lovely than a tree. 

A tree whose crucial property 
is loop-free connectivity. 
 
A tree that must be sure to span 
so packets can reach every LAN. 
 
First, the root must be selected. 
By ID, it is elected. 
 
Least-cost paths from root are traced. 
In the tree, these paths are placed. 
 
A mesh is made by folks like me, 
Then bridges find a spanning tree.

LAN ≈ L2 network (Local Access Network)

mesh ≈ a graph with high degree of connectivity
bridge ≈ switch

See Also 
“Trees” 

by American poet Joyce Kilmer 
1913



Addressing
(and a bit of IGP/EGP interplay)



Addressing

● How do routing and forwarding scale to the size of the Internet?! 

● Can I really have a table entry for every host? 
● How long would it take for D-V to converge this distributed algorithm when 

you have propagation delays brought about by the speed of light? 
● Can a L-S router really build/maintain a graph for the entire Internet? 

● I’ve mentioned that intradomain & interdomain routing use different protocols 
● We’ve mostly talked about intra so far (IGPs); inter next week (BGP the EGP) 
● .. maybe the magic of scaling shows up in the interdomain routing protocols? 

● Actually, the scaling is mostly about addressing



Addressing

● IP addresses are part of what makes IP scalable 
● We’ll focus on IPv4 addresses 

● IPv6 is pretty similar; we don’t focus too much on it in this class 

● Without talking about details of BGP, I will also touch on how intradomain and 
interdomain routing protocols interact 

● I am not going to talk about Layer 2 addresses today (Ethernet addresses) 
● They work differently; probably better name would be Ethernet identifiers 
● They don’t need to scale as much (though bigger than people thought…) 
● They’ll probably come up later in the semester



Addressing: Early Internet

● Remember, the Internet is a network or networks

Cloud Provider

National ISP

Regional 
ISP

University



● Remember, the Internet is a network or networks 
● Leads naturally to a two level hierarchy 
● .. and hierarchy is one of the major tools to address scaling! 

● Could imagine hierarchical 
addressing scheme… 

● Hosts have identifiers 
● Networks have identifiers 

● Address is like: Network.Host 
● This could be 3.7

Addressing: Early Internet
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4



● Routing between domains only concerned with network part 

● Interdomain routing protocol 
only deals with four nodes! 

● Limits table size & routing state 
● Limits churn 

● Links added/failed inside 
domains generally has 
no effect; require no messages 

● Big scalability improvement assuming 
many more hosts than networks (seems fair!)
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1

4

Hierarchical Addressing Implications
Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8 

4.* R6

…

R9 R6
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Hierarchical Addressing Implications
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● Internal routers need routes for all hosts in same network… 
● Scales with number of hosts in single network

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8 

4.* R6

…
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R4’s Table
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3.1 R3
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3.6 R5
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Hierarchical Addressing Implications
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● Internal routers need routes for all hosts in same network… 
● Scales with number of hosts in single network 

● .. and routes for other networks

Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8 

4.* R6

…
3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

1.* ?

2.* ?

4.* ?



Hierarchical Addressing Implications
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Hierarchical Addressing Implications
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● Internal routers need routes for all hosts in same network… 
● Scales with number of hosts in single network 

● .. and routes for other networks 
 

● So total state scales with number 
of hosts in this network plus 
number of other networks 

● Again: big scalability improvement 
assuming many more hosts than 
networks!
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Hierarchical Addressing Implications
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Internal router
Border router

R9’s Table

Dst Nxt

1.* R6

2.* R8 

4.* R6

…
3

R4’s Table

Dst Nxt

3.1 R3

3.2 R3

3.3 R3

3.4 R3

3.5 R3

3.6 R5

3.7 R5

*.* R9

Sidenote: You don’t even need individual network 
routes in all the internal routers. 
 
Since we only have one way to get to anywhere else 
in this network, we could just have a default route.



● Note that addresses aren’t assigned randomly! 
● Hosts that are “close to each other” (in some sense) share part of their address 
● We leverage this structure to make routing (and forwarding) scale better 

● We use structured addresses like this all the time! 
● Soda Hall #417 is much easier to work with than if we just numbered every office 

in the world uniquely… 

● This also explains why hosts don’t generally participate in routing protocols… 
● A human decided how to divide up the network in a way that makes sense 
● Your computer doesn’t have its own IP address wherever it goes… 
● .. it changes it address depending on where it is 
● .. it “moves in” to the network where it’s attached (and gets a new address there)

Hierarchical Addressing Implications



Hierarchical Addressing Implications Recap

● Assuming addresses have two parts: Network.Host 

● Border routers running EGPs figure out routes between networks 

● Internal routers running IGPs figure out host routes for hosts in that network 
.. and may propagate the network routes from the EGP (it's one way to do it) 

● Scales much better than “flat” routing: 
● Border routers don’t see churn inside networks 
● Internal routers don’t see churn in other networks 
● Routers only need state for: 

● Hosts in their network  
● And other networks themselves



● So that’s basically how addresses worked on early Internet 

● An IPv4 address is 32 bits long 
● Each host gets a unique one (or more than one, and with caveats) 

● Was broken into: 
● Network part (8 bits) 
● Host part (24 bits) 

● When an organization wanted to get on the Internet, they’d get their own 
network part. 
● e.g., Apple was (and is still) 17…

Addressing: Early Internet

Still true

Different today; we’ll discuss…



IPv4 Addresses

● You could just represent an IPv4 address as a single big integer 
● But far more common is a dotted quad or dot quad

00010001 00100010 10011110 00000101

17 34 158 5

17.34.158.5

Network Part

(or 17.2268677)



IPv4 Address Evolution

● 8 bit network part 

● .. at most 256 networks 

● .. this probably seemed like enough at the time 

● .. boy were they ever wrong 
 
 

● Became clear we needed more networks 
● Solution: 

● “Classful” addressing



Classful Addressing

network host 0

0 8
126 nets 

~16M hostsClass A

network host 1
160

0 ~16K nets 
~65K hostsClass B

~2M nets 
254 hosts

network host 1
240

1 0Class C

● Three main classes of network



Classful Addressing

● Ran into problems of its own! 

● The sizes of the classes weren’t that useful 
● Class A far too big for most organizations! 
● Class C far too small for many organizations! 
● Class B is best option for many 

● Still too big for many organizations 
● Not that many of them! 

● Running out of Class B?  That’s a lot of routes… 
● Number of interdomain routes was going up!

126 nets 
~16M hostsClass A

~16K nets 
~65K hostsClass B

~2M nets 
254 hostsClass C



Classful Addressing

1989 1990 1991 1992 1993 1994

20,000

10,000

15,000

5,000

● Number of interdomain routes by year (approximate)



CIDR: Classless Inter-Domain Routing

● So they needed a new solution: CIDR 

● Classless Inter-Domain Routing 

● Still what we use today 

● In a nutshell: 

● Introduces a hierarchical process for assignment of addresses 

● Gives up simple notion of “network part” and “host part” of fixed sizes



CIDR: Hierarchical address assignment 

● ICANN (Internet Corporation for Assigned Names and Numbers) 
● .. gives out large contiguous blocks of the old Class C addresses to … 

● RIRs (Regional Internet Registries) 
● (ARIN, AFRINIC, APNIC, LACNIC, RIPE NCC) 
● .. who give out portions of those blocks to … 

● Large organizations 
● (e.g., ISPs like AT&T) 
● .. who give our portions of those blocks to … 

● Smaller organizations and individuals 
● (e.g., UC Berkeley)



CIDR: Hierarchical assignment example (Fake!) 

● ICANN wants ARIN to have 500M addresses 
● Requires 28 bits 
● ICANN picks 4 bit prefix 
● Assigns it to ARIN (4 + 28 = 32) 

● ARIN allocates 8M of its addresses to AT&T 
● Requires 23 bits 
● ARIN picks next 5 bits of prefix 
● Assigns it to AT&T (4 + 5 + 23 = 32) 

● AT&T allocates 16K addresses to UC Berkeley 
● Requires 14 bits 
● AT&T picks next 9 bits of prefix 
● Assigns it to UCB (4 + 5 + 9 + 14 = 32) 

● UCB … 
● Now has its own block with prefix of 18 bits 
● Remaining 14 bits are for its hosts

 1101

 110111001

 110111001110100010

 110111001110100010xxxxxxxxxxxxxx

Prefix



CIDR: Hierarchical assignment example (Fake!) 

● ICANN wants ARIN to have 500M addresses 
● Requires 28 bits 
● ICANN picks 4 bit prefix 
● Assigns it to ARIN (4 + 28 = 32) 

● ARIN allocates 8M of its addresses to AT&T 
● Requires 23 bits 
● ARIN picks next 5 bits of prefix 
● Assigns it to AT&T (4 + 5 + 23 = 32) 

● AT&T allocates 16K addresses to UC Berkeley 
● Requires 14 bits 
● AT&T picks next 9 bits of prefix 
● Assigns it to UCB (4 + 5 + 9 + 14 = 32) 

● UCB … 
● Now has its own block with prefix of 18 bits 
● Remaining 14 bits are for its hosts

 11010000000000000000000000000000 = 208.0.0.0

 11011100100000000000000000000000 = 220.128.0.0

 11011100111010001000000000000000 = 220.232.128.0

 110111001110100010xxxxxxxxxxxxxx

Prefix



CIDR: Hierarchical assignment example (Fake!) 

● ICANN wants ARIN to have 500M addresses 
● Requires 28 bits 
● ICANN picks 4 bit prefix 
● Assigns it to ARIN (4 + 28 = 32) 

● ARIN allocates 8M of its addresses to AT&T 
● Requires 23 bits 
● ARIN picks next 5 bits of prefix 
● Assigns it to AT&T (4 + 5 + 23 = 32) 

● AT&T allocates 16K addresses to UC Berkeley 
● Requires 14 bits 
● AT&T picks next 9 bits of prefix 
● Assigns it to UCB (4 + 5 + 9 + 14 = 32) 

● UCB … 
● Now has its own block with prefix of 18 bits 
● Remaining 14 bits are for its hosts

 11010000000000000000000000000000 = 208.0.0.0/4

 11011100100000000000000000000000 = 220.128.0.0/9

 11011100111010001000000000000000 = 220.232.128.0/18

 110111001110100010xxxxxxxxxxxxxx

Prefix

CIDR “slash notation”



Netmasks: Another representation of prefixes

● Besides “slash notation”, there is netmask notation 
● Totally equivalent, just a different way of writing it 
● A bitmask of the prefix bits 
● Just turn the prefix bits to 1 and convert to dot quad

 11010000000000000000000000000000 = 208.0.0.0

 11011111100000000000000000000000 = 220.128.0.0

 11011100111010001000000000000000 = 220.232.128.0

 11110000000000000000000000000000 = 240.0.0.0

 11111111100000000000000000000000 = 255.128.0.0

 11111111111111111100000000000000 = 255.255.192.0

 /240.0.0.0

 /255.128.0.0

 /255.255.192.0



CIDR: Classless Inter-Domain Routing

● Back to the problems CIDR was trying to solve… 

● #1: Classful was wasteful 

● Like our example, Berkeley wanted ~16K addresses 
● Would have needed a Class B, which has ~65K address 
● .. the other ~50K addresses wasted! 

● With CIDR, blocks are at worst about twice as big as needed 
● .. if you want 254 addresses, you can get a /8 — no waste 
● .. if you want 255 addresses, you need a /9 — wastes 255! 
● (the first last address in a block is reserved, hence 254, not 256)



CIDR: Classless Inter-Domain Routing

● Back to the problems CIDR was trying to solve… 

● #2: Number of interdomain routes was going up 

To Be Continued…
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