CS 168 Interdomain Routing

Fall 2022
Sylvia Ratnasamy
CS168.io

Routing, so far...

"Autonomous System (AS)" or "Domain"

"Autonomous System (AS)" or "Domain"

This week: interdomain routing

"Interdomain topology" or "AS graph"

This week: interdomain routing

This week: interdomain routing

Autonomous Systems (AS)

- AS is a network under a single administrative control
 - Think AT&T, UCB, IBM, France Telecom etc.

Often informally called "domains"

Each AS is assigned a unique AS n

Assigned by ICANN and its subordinate

E.g., ASN 25 is UCB

Autonomous Systems (AS)

ASN Statistics by country in World zone

Common Kinds of ASes

- Stub: An AS that merely sends/receives packets on behalf of its directly connected hosts
 - Companies, universities, etc.

- **Transit**: carries packets on behalf of other *ASes*
 - Can vary greatly in scale (global, regional, etc.)

Interdomain topology is shaped by the business relationships between ASes

- Three basic kinds of relationships between ASes
 - AS X can be AS Y's customer
 - AS X can be AS Y's provider
 - AS X can be AS Y's peer
- Business implications
 - Customer pays provider
 - Peers don't pay each other
 - Assumed to exchange roughly equal traffic

AS graph w/ business relationships

Relations between ASes

provider ← Customer
peer ← peer

Business Implications

- Customers pay provider
- Peers don't pay each other

AS graph w/ business relationships

Outline

- Context
- Goals / Challenges
- Approach
- Detailed design
- Problems with BGP

Recall: goals for intradomain routing?

- Goals
 - Find valid routes → no loops, no deadends
 - Find "good" paths → least cost paths

Goals for interdomain routing?

- Still want valid routes, etc.
- Plus two new goals:
 - Scalability: routing must scale to the entire Internet!
 - Policy compliance: routes must reflect business goals

Scaling

- A router must be able to reach any destination
 - Given any destination address, must know the "next hop"
- Naive: Have an entry for each destination
 - Doesn't scale!
- Recall, last lecture: host addressing key to scaling!

Recall, IP addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

Recall, IP addresses

- IP address is 32 bits
- Partitioned into a network prefix and host suffix

Recall, IP addresses

- IP address is 32 bits
- Partitioned into a network prefix and host suffix
- Prefix represents all hosts in that network
 - For convenience, denoted w/ extended dotted quad

This prefix is: 12.34.158.0/23

Recall, IP addresses

- IP address is 32 bits
- Partitioned into a network prefix and host suffix
- Prefix represents all hosts in that network
 - For convenience, denoted w/ extended dotted quad
- For my convenience (in lecture): a.b.0.0/16
 - If this confuses you, stop me and ask!

Destinations in interdomain routing are prefixes

Back to our AS Graph ...

Recall, IP addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

Recall, last lecture... Hierarchical address assignment

- ICANN gives out large prefixes to ...
- RIRs (Regional Internet Registries) who give out sub-prefixes to ...
- Large organizations (e.g., AT&T) who give out sub-prefixes to ...
- Smaller organizations and individuals (e.g., UCB)

Back to our AS Graph ...

Hierarchical allocation enables <u>aggregation!</u>

Recall, IP addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

Back to our AS Graph ...

Multi-homing limits aggregation!

Verizon needs routing entries for both a.0.0.0/8 and a.b.0.0/16

IP addressing → scalable routing?

- Aggregation helps routing scalability
- Problem: may not be able to aggregate addresses for "multi-homed" networks
 - Multi-homed → more than one provider

- Two competing forces in scalable routing
 - aggregation reduces number of routing entries
 - multi-homing increases number of entries

Recap: Scaling

A router must be able to reach any destination

Naive: Have an entry for each destination

- Better: Have an entry for a range of addresses
 - Can summarize many destinations with one entry
 - But can't do this if addresses are assigned randomly!
- Hierarchical addressing is key to scaling
 - Works best when allocation hierarchy matches topology

Goals for interdomain routing?

- Two new goals:
 - Scalability: routing must scale to the entire Internet!
 - Policy compliance: routes must reflect business goals

Administrative preferences shape interdomain routing

ASes want freedom to pick routes based on policy

Policy

- "I don't want to carry AS#2046's traffic through my network"
- "Prefer it if my traffic is carried by AS#10 instead of AS#4"
- "Avoid AS#54 whenever possible"
- On Mondays I like AS#12, on Tuesdays AS#13
- Not expressible as Internet-wide "least cost"!

Two Principles For Typical Policies

- 1) Don't accept to carry traffic if you are not being paid!
 - Traffic should come from or go to customer
 - This is about what traffic I carry
- 2) Make/save money when sending traffic
 - Prefer sending traffic to customer
 - If can't do that, then a peer
 - Only send via a provider if I have to
 - This is about where I send traffic

Routing Follows the Money!

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Routing Follows the Money!

An AS only carries traffic to/from its own customers over a peering link

Routing Follows the Money!

Routes are "valley free" (will return to this later)

Administrative preferences shape interdomain routing

- ASes want freedom to pick routes based on policy
- ASes want autonomy
- ASes want privacy

Autonomy and Privacy

- ASes want autonomy
 - Want the freedom to choose their own policies
- ASes want privacy
 - Don't want to explicitly announce these choices to others
- Policy is "what" we want to achieve; autonomy and privacy are requirements on "how" we achieve it

In Short

- AS topology reflects business relationships between ASes
- Business relationships between ASes impact which routes are acceptable
- Interdomain routing design must support these policy choices
 - While preserving domains' autonomy and privacy
- Border Gateway Protocol (BGP) is current design

The Rise of a New Routing Paradigm

- The idea of routing through a network is an old one
 - Dijkstra's (1956); Bellman-Ford (1958); ...
 - All designed to find "least cost" paths
- The notion of "autonomous systems" with their private policies was new
 - BGP was hastily designed in response to this need
 - Developed 1989-1995
- Has proven effective but with some serious warts

Outline

- Context
- Goals / Challenges
- Approach
- BGP: detailed design
- Limitations

Recap: Interdomain Setup

- Nodes are Autonomous Systems (ASes)
- Destinations are IP prefixes (12.0.0.0/8)
- Links represent physical links and biz relationships

Choice of Routing Algorithm

Link State (LS) vs. Distance Vector (DV)?

- LS offers no privacy broadcasts all network information
- LS limits autonomy -- need agreement on metric, algorithm
- DV is a decent starting point
 - But wasn't designed to implement policy
 - Per-destination routing updates as a hook to implement policy?

BGP extends DV to accommodate policy

Outline

- Context
- Goals / Challenges
- Approach
 - From DV to BGP
 - How policy is implemented (detail-free version)
- Detailed design
- Problems with BGP

BGP: Basic Idea

Policy will determine which route advertisements are selected and which are advertised (more later)

BGP inspired by Distance Vector

Per-destination (prefix) route advertisements

No global sharing of network topology info.

- Iterative and distributed convergence on paths
- With four crucial differences!

Differences between BGP and DV (1) BGP may aggregate destinations

 For scalability, BGP may aggregate routes for different prefixes

Differences between BGP and DV (2) Not picking shortest path routes

 BGP selects the best route based on policy, not least cost

How do we avoid loops?

Node 2 may prefer "2, 3, 1" over "2, 1"

Differences between BGP and DV (3) distance-vector → path-vector

- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the entire AS path for each destination

Loop Detection w/ Path Vector

- AS can easily detect and discard paths w/ loops
 - E.g., A sees itself in the path "C, B, A"
 - E.g., A simply discards the advertisement

Differences between BGP and DV

(3) distance-vector → path-vector

- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the entire AS path for each destination
- Benefits
 - Loop avoidance is easy
 - Can base policies on the entire path

Differences between BGP and DV (4) Selective route advertisement

- For policy reasons, an AS may choose not to advertise a route to a destination
- Hence, reachability is not guaranteed even if graph is connected

Example: B does not want to carry traffic between A and C

Recap: four differences

- BGP may aggregate destinations and routes
- Route selection not based on shortest path
- Advertise the entire path (path vector)
- Selective route advertisement

Outline

- Context
- Goals
- Approach:
 - BGP extends Distance-Vector
 - How policy is implemented (detail-free version)
- Detailed design
- Limitations

Recall:

Policy imposed in how routes are import and exported

- Import (aka selection): Which path to use?
 - controls whether/how traffic leaves the network
- Export: Which path to advertise?
 - controls whether/how traffic enters the network

Repeating Two Crucial Points

- Import (selection): Which path to use?
 - Determines where your traffic goes
 - Why? Because this involves choosing the route....
- Export: Which path to advertise?
 - Determines which traffic you carry
 - Why? This determines who can send traffic to you

Gao-Rexford Rules

- Rules that describe common not required! practice in import/export policies
- Essential to understanding why the Internet works
 - Because it wouldn't if policies were completely general

Gao-Rexford Rule: Import policy

- When <u>importing</u> (selecting) a route to a destination, pick route advertised by customer > peer > provider
- In practice, ASes use additional rules to break ties
- Typical example, in decreasing order of priority:
 - make/save money (G-R rule)
 - maximize performance
 - minimize use of my network bandwidth
 -

Gao-Rexford Rules: Export policy

- Question: where should I export a route?
 - Recall: ASes that I export a route to, will send traffic to me

Destination prefix advertised by	Export route to
Customer	
Peer	
Provider	

Gao-Rexford Rules: Property

If all ASes follow G-R, routes are "valley free"

"valley free" == "single peaked"

(proof sketch in discussion section)

Gao-Rexford Rules: Implication

- Under two assumptions about the AS graph (coming up), if all ASes follow Gao-Rexford policies, then in steady state, we can guarantee:
 - Reachability: any two ASes can communicate
 - Convergence: all routers agree on paths

Two assumptions

#1 The graph of customer-provider relationships is acyclic

- Cannot have $A \rightarrow B \rightarrow ... \rightarrow C$ and then $C \rightarrow A$ (cust \rightarrow prov)
- Means one can arrange providers in a hierarchy
- Note: OK if peering relationships are cyclic (A-B, B-C, C-A)

#2 Starting from any AS, and following the chain of providers leads to a Tier 1 AS

Tier 1: group of provider ASes that all peer with each other

Gao-Rexford Rules: Implication

- Under two assumptions about the AS graph (coming up), if all ASes follow Gao-Rexford policies, then in steady state, we can guarantee:
 - Reachability: any two ASes can communicate
 - Convergence: all routers agree on paths
- The above are <u>not</u> guaranteed for general policies!
 - (You'll see an example of this in section)

Recap

- Policy is implemented by choosing which routes we import and which ones we export
- Gao-Rexford rules tell us which routes to import/export in order to make/save money
- Good stuff happens when you follow G-R rules

Questions?

Why Valley-Free?

If all ASes follow G-R, routes are "valley free"

Why Valley-Free?

If all ASes follow G-R, routes are "valley free"

Proof: based on observing that once traffic arrives from a provider (above) or peer (side), it can only go down